Connect with us

Künstliche Intelligenz

Thermal Master THOR002 im Test: Präzise Wärmebildkamera zum fairen Preis


Der Thermal Master THOR002 misst präzise von -20 °C bis 550 °C. Wie gut die preiswerte Wärmebildkamera für Hand- und Heimwerker ist, zeigt der Test.

Mit der Thermal Master THOR002 hat der Hersteller eine autarke Wärmebildkamera im Programm, die sich sowohl an anspruchsvolle Privatanwender als auch an Profis richtet. Das rund 500 Gramm schwere Gerät kommt im Pistolenformat mit gummiertem Handgriff und einem 3,5-Zoll-IPS-Display (640 × 480 Pixel). Integriert ist ein IR-Sensor mit einer nativen Auflösung von 256 × 192 Pixeln sowie eine zusätzliche 2-Megapixel-Echtbildkamera.

Der Messbereich reicht von -20 °C bis 550 °C, was den Einsatz sowohl im Innen- als auch im Außenbereich erlaubt. Zum besseren Anvisieren ist ein roter Laserpointer verbaut. Alternativ lässt sich eine helle LED zuschalten, um das Umfeld auszuleuchten. Ein integriertes Stativgewinde erlaubt stationäre Messungen – praktisch bei längeren Einsätzen.

Die Bedienung erfolgt über gummierte Tasten, die auch mit dünnen Handschuhen gut zu ertasten sind. Nutzer mit dickeren Handschuhen könnten jedoch wegen des geringen Tastenabstands gelegentlich unbeabsichtigt mehrere Tasten drücken. Ausgelöst wird die Messung über den Pistolengriff, der einen klar definierten Druckpunkt bietet. Wird dieser länger gehalten, startet die Videoaufnahme.

Neben Einzelbildern kann die Kamera auch Videos samt Ton aufzeichnen. Für Fotos lassen sich im Nachhinein Sprachkommentare hinzufügen – zum Beispiel zur Dokumentation oder Analyse. Die Daten speichert das Gerät auf einer microSD-Karte; eine 32-GB-Karte liegt bei. Zur weiteren Ausstattung gehört ein USB-C-Anschluss zum Laden des Akkus, der laut Hersteller bis zu acht Stunden durchhält.

Trotz ihres Standalone-Charakters ist die THOR002 nicht komplett abgeschottet: Auf Wunsch kann sie auch mit einem Smartphone kommunizieren. Für den Einsatz in staubiger Umgebung lässt sich eine Schutzabdeckung über die Objektive schieben.

Die Thermal Master THOR002 empfiehlt sich damit als robustes Werkzeug für Handwerker, Techniker und ambitionierte Heimwerker, die auf präzise Temperaturmessungen angewiesen sind.

Design & Lieferumfang

Die THOR002 präsentiert sich im klassischen Pistolen-Design, wie es bei vielen tragbaren Wärmebildkameras üblich ist. Die Konstruktion wirkt robust und liegt sicher in der Hand. Auf der Rückseite dominiert das 3,5-Zoll-IPS-Display mit einer Auflösung von 640 × 480 Pixeln, das eine scharfe Darstellung bietet. Eine umlaufende Blende sorgt dafür, dass das Display beim Ablegen nicht direkt den Untergrund berührt.

An der Vorderseite sitzen die Infrarotlinse mit 4,3 mm Brennweite sowie die Digitalkamera. Ein LED-Licht und ein Laserpointer helfen bei der präzisen Zielerfassung. Die Infrarotoptik wird durch einen mechanischen Linsenschutz vor Beschädigungen bewahrt. Wünschenswert wäre allerdings ein vollständiger Frontschutz gewesen.

Zum Lieferumfang gehören ein USB-C-Kabel, die erwähnte microSD-Karte, ein schlagfester Transportkoffer sowie eine schriftliche Dokumentation inklusive Konformitäts- und Kalibrierzertifikat. Dank IP54-Schutzklasse ist das Gerät gegen Spritzwasser geschützt. Laut Hersteller übersteht es auch Stürze aus bis zu zwei Metern Höhe.

Funktionen

Die THOR002 wird direkt über Navigationstasten bedient – eine separate App ist nicht erforderlich. Das unserer Ansicht nach sehr intuitive Menüsystem ermöglicht schnellen Zugriff auf alle wichtigen Funktionen; das Benutzerinterface ist zudem in deutscher Sprache verfügbar.

Das Hauptmenü gliedert sich in vier Bereiche: Messfunktionen, Bildmodi, Farbpaletten und Einstellungen. Innerhalb der Messfunktionen lassen sich Mittelpunkt-, Heiß- und Kaltpunkt-Tracking sowie bis zu drei benutzerdefinierte Messpunkte aktivieren.

Zur besseren Unterscheidung der Wärmeverteilung stehen mehrere Bildmodi zur Verfügung: Der reine IR-Modus zeigt das klassische Wärmebild. Der PIP-Modus (Picture-in-Picture) blendet das Wärmebild teilweise in das Sichtbild ein, während der Visual-Modus ausschließlich das normale Bild der integrierten 2-Megapixel-Kamera darstellt.

Ein zentrales Highlight ist die Fusion-Imaging-Funktion: Dabei werden die Infrarot- und Echtbildaufnahmen übereinandergelegt, wobei sich der Transparenzgrad individuell einstellen lässt. Das erleichtert insbesondere bei komplexen Strukturen mit vielen unterschiedlichen Temperaturzonen die Orientierung.

Zur weiteren Differenzierung von Temperaturverteilungen können sieben verschiedene Farbpaletten ausgewählt werden.

Die Wärmebildkamera lässt sich per integriertem WLAN-Hotspot mit dem Smartphone verbinden. Dafür ist lediglich die App des Herstellers erforderlich. Das mobile Gerät fungiert dann als zweiter Bildschirm – nützlich etwa bei schwer zugänglichen Messpunkten oder zur Teamarbeit. Die App erlaubt zudem das Speichern von Bildern und Videos auf dem Smartphone oder Tablet.

Für Windows-Nutzer steht eine kostenlose PC-Software zur Verfügung, die über USB-C das Live-Streaming und eine Datenanalyse ermöglicht. Eine entsprechende Anwendung für Mac OS gibt es derzeit nicht.

Bildqualität

Die Infrarotkamera liefert eine native Auflösung von 256 × 192 Pixeln bei einer Bildfrequenz von 25 Hz. Das entspricht rund 49.000 Messpunkten pro Bild und sollte für sehr viele Anwendungen ausreichen. Der Bereich, in dem die Temperaturen gemessen werden können, reicht von -20 °C bis 550 °C.

Die Messgenauigkeit liegt laut Hersteller bei ±2 °C oder ±2 % des Messwerts. Die thermische Empfindlichkeit (NETD) beträgt weniger als 40 Millikelvin (mK), was eine gute Auflösung von Temperaturunterschieden ermöglicht. Je niedriger dieser Wert, desto besser können Unterschiede erkannt werden.

Das Objektiv bietet ein Sichtfeld von 40° x 30°. Es gibt nur einen digitalen 4-fach-Zoom und bei diesem Modell auch keine Makro-Einstellung. Der Hersteller hat noch einen Modus für eine künstlich erhöhte Auflösung eingebaut, die X³IR SuperIR-Resolution genannt wird und bei 512 × 384 Pixeln liegt. Die sieht zwar gut aus, doch letztlich werden die fehlenden Pixel nur hinzugerechnet.

Technische Daten

IR-Auflösung 256 × 192 Pixel
Bildfrequenz 25 Hz
Temperaturbereich -20°C bis 550°C
Messgenauigkeit ±2°C oder ±2%
Display 3,5″ IPS (640 x 480)
Digitalkamera 2 Megapixel
Akkulaufzeit 8 Stunden
Ladezeit 4 Stunden
Schutzklasse IP54
Gewicht ca. 500g
Sichtfeld (FOV) 40° x 30°

Preis

Die Thermal Master THOR002 ist als professionelle Einstiegslösung positioniert und kostet bei Amazon mit dem Code TMTHOR002 nur 341 Euro statt 449 Euro. Für den Preis erhält man eine vollwertige Wärmebildkamera mit solidem Funktionsumfang und professioneller Ausstattung.

Direkt beim Hersteller bekommt die Wärmebildkamera mit dem Code TMTHOR002 sogar für knapp 243 Euro (285 US-Dollar). Der Versand erfolgt aus Lagerbeständen in Deutschland binnen acht Tagen. Da der Hersteller in China ansässig ist, gelten dann aber die gewohnten Käuferschutzbestimmungen der EU nicht. Thermal Master gewährt allerdings ein 30-tägiges Rückgaberecht und eine Gewährleistung von zwei Jahren.

Fazit

Die Thermal Master THOR002 ist eine durchdachte Wärmebildkamera, die sich durch ihre professionelle Ausstattung und den fairen Preis auszeichnet. Einschränkungen gibt es bei der Verfügbarkeit einer Makrolinse – diese ist im Gegensatz zum Schwestermodell THOR001 nicht verfügbar. Auch die Anzahl der Custom-Messpunkte ist mit drei Stück etwas begrenzt. Für die meisten Anwendungen reicht die Ausstattung jedoch vollkommen aus.



Source link

Künstliche Intelligenz

Robocop Light: Exoskelett Hypershell Pro X im Test


Das Hypershell Pro X ist ein elektrisch betriebenes Exoskelett, das Gehen erleichtern soll. Es hat dazu zwei Motoren an der Hüfte, die bei Beinbewegungen unterstützen. So soll man entweder 30 Kilogramm mehr tragen können oder bei gleicher Belastung bis zu 30 Prozent weniger Kraft aufwenden müssen, verspricht der Hersteller. Das Exoskelett hilft auch bei anderen alltäglichen Bewegungsabläufen. So ist es je nach Modell möglich, damit leichter Treppen zu steigen, Fahrrad zu fahren und zu joggen.

Das Exoskelett hat speziell dafür verschiedene, auf Wunsch automatisch umschaltende Bewegungsprofile, die zu unterschiedlichen Unterstützungsbewegungen führen. Beim günstigsten Modell, dem Hypershell Go X (999 Euro), sind es sechs Profile, die durch einen 400-Watt-Motor unterstützt werden. Die beiden Varianten mit doppelt so hoher Motorleistung – die Modelle Hypershell Pro X (1199 Euro) und Carbon X (1799 Euro) – helfen bei zehn Bewegungsarten. Besonders das Radfahren ist ein fühlbarer Mehrwert, aber auch Gehen auf Schotter sowie Bergsteigen erweitern den Nutzen.

  • Das Exoskelett Hypershell Pro X unterstützt Träger bei diversen Bewegungsabläufen.
  • Das Mehr an Ausdauer und Kraft ist deutlich spürbar.
  • Leider ist die Lebensdauer des Geräts nicht sehr lang.

Die Modelle unterscheiden sich auch in der Reichweite. Dem Go X liegt ein normaler Akku bei, den anderen Modellen zwei – angesichts doppelter Motorleistung angemessen – Thermoakkus, die bis zu minus 20 °C funktionieren sollen. Damit kommt man 2,5 Kilometer weiter als beim Einsteigermodell, das laut Datenblatt 15 Kilometer Reichweite erlaubt.


Das war die Leseprobe unseres heise-Plus-Artikels „Robocop Light: Exoskelett Hypershell Pro X im Test“.
Mit einem heise-Plus-Abo können Sie den ganzen Artikel lesen.



Source link

Weiterlesen

Künstliche Intelligenz

Gezielte Materialfehler können Effizienz von Chips erhöhen


Was, wenn die winzigen Mängel in einem Material, die Ingenieure seit jeher zu vermeiden suchen, in Wahrheit ein ungenutztes Potenzial darstellen? Genau dieser Frage sind Forscher des Ningbo Institute of Materials Technology and Engineering (NIMTE) im chinesischen Ningbo nachgegangen. Ihre Antwort, veröffentlicht im renommierten Fachmagazin Nature Materials, könnte die Art und Weise, wie wir über die Entwicklung von Elektronik denken, grundlegend verändern.

Die Wissenschaftler haben einen Weg gefunden, gezielt herbeigeführte „Unvollkommenheiten“ in einem Material zu nutzen, um die Energieeffizienz von spintronischen Bauteilen um das Dreifache zu steigern. Das ist ein bemerkenswerter Fortschritt auf einem Gebiet, das ohnehin als große Hoffnung für die Elektronik der Zukunft gilt.

Die Spintronik gilt als eine der vielversprechendsten Technologien für das Zeitalter nach dem Silizium. Anstatt wie bei herkömmlichen Chips nur die elektrische Ladung von Elektronen für die Datenverarbeitung zu nutzen, bezieht die Spintronik eine weitere Quanteneigenschaft ein: den Spin der Elektronen, eine Art inneren Eigendrehimpuls.

Doch die Forschung stieß bisher auf einen hinderlichen Kompromiss. Materialfehler konnten zwar das Schreiben von Daten erleichtern, erhöhten aber zugleich den elektrischen Widerstand und damit den Energieverbrauch. Das Team aus China konzentrierte sich nun auf einen verwandten Quanten-Effekt, den sogenannten Orbital-Hall-Effekt. Dieser beschreibt die Bewegung von Elektronen um den Atomkern.

Hier entdeckten die Forscher einen unkonventionellen Mechanismus in dem Material Strontiumruthenat. Vereinfacht ausgedrückt, führen bestimmte Streuprozesse an den Materialdefekten nicht zu einem Leistungsverlust, sondern verlängern die „Lebensdauer“ des orbitalen Impulses. Das Resultat ist ein stärkerer orbitaler Strom, der für das Schalten von magnetischen Zuständen genutzt werden kann.

„Diese Arbeit schreibt im Grunde das Regelwerk für das Design dieser Bauteile neu“, erklärt Prof. Zhiming Wang, einer der korrespondierenden Autoren der Studie, laut einer Mitteilung, die ScienceDaily veröffentlichte. „Anstatt Materialunreinheiten zu bekämpfen, können wir sie nun ausnutzen.“

Seine Kollegin Dr. Xuan Zheng, eine der Erstautorinnen, ergänzt, dass diese Streuprozesse, die „normalerweise die Leistung beeinträchtigen, tatsächlich die Lebensdauer des Bahndrehimpulses verlängern und dadurch den orbitalen Strom verstärken“. Diese Erkenntnis ist der Kern des Durchbruchs.

So vielversprechend diese Ergebnisse klingen, so klar ist auch der potenzielle Haken. Es handelt sich um Grundlagenforschung, die unter Laborbedingungen stattgefunden hat. Der Weg von einer dreifachen Effizienzsteigerung auf einem experimentellen Chip bis hin zu einer zuverlässigen Massenproduktion für den Markt ist erfahrungsgemäß lang, komplex und kostenintensiv.

Dennoch ist die Entdeckung mehr als nur ein weiterer akademischer Erfolg. Sie stellt ein etabliertes Paradigma in der Materialwissenschaft infrage – nämlich, dass Perfektion und Reinheit immer das oberste Ziel sein müssen. Sollte sich der Ansatz als skalierbar erweisen, könnte er die Entwicklung von extrem schnellen und energieeffizienten Speichern wie MRAMs beflügeln und damit künftigen KI-Anwendungen oder mobilen Geräten zugutekommen.

Dieser Beitrag ist zuerst bei t3n.de erschienen.


(jle)



Source link

Weiterlesen

Künstliche Intelligenz

Datenschutz: Uni Melbourne durfte Protestierende nicht über WLAN verfolgen


close notice

This article is also available in
English.

It was translated with technical assistance and editorially reviewed before publication.

Im vergangenen Jahr hat die Universität Melbourne über WLAN-Standortdaten Studenten nach Protesten identifiziert. Jetzt hat ein Datenschutzbeauftragter des australischen Bundesstaates Victoria festgestellt, dass die Nutzung dieser Daten eine Verletzung der Privatsphäre darstellte.

Die Universität nutzte Videoaufnahmen von Überwachungskameras (Closed-Circuit Television, CCTV) und WLAN-Standortdaten, um die Studierenden zu identifizieren. Nun wurde zum einen untersucht, ob die Universität Studierende und Mitarbeitende hinreichend informiert hatte, wie ihre persönlichen Daten – in Form von WLAN-Standortdaten und E-Mails – verwendet wurden. Zum anderen stellte sich die Frage, ob die Datennutzung zur Identifizierung einen „genehmigten sekundären Zweck“ darstellte.

Im Juli 2024 fanden Sitzblockaden in der Universität Melbourne statt. Die Universität wies die Studierenden darauf hin, das Gebäude zu verlassen. Ansonsten drohte die Universität mit Disziplinarmaßnahmen wie Suspendierung oder die Meldung an die Polizei. 22 Personen blieben sitzen.

Der Informationsbeauftragte stellte fest, dass die Nutzung von CCTV keine Verletzung der Privatsphäre darstellte, das Nutzen von WLAN-Standortdaten jedoch schon, da die Richtlinien der Universität nicht detailliert genug waren. Im Bericht steht: „Die Studenten wussten nicht, warum ihre WLAN-Standortdaten erfasst wurden, geschweige denn, wie diese verwendet werden könnten. Sie konnten keine fundierte Entscheidung darüber treffen, ob sie das WLAN-Netzwerk während der Sitzblockade nutzen wollten, und waren sich der möglichen Konsequenzen einer solchen Nutzung nicht bewusst.“

Im Laufe der Ermittlungen änderte die Universität ihre Richtlinien bezüglich der Nutzung von Standortdaten, inklusive der sekundären Nutzung. Das Amt des Datenschutzbeauftragten beschloss daher, keine formelle Aufforderung zur Einhaltung der ursprünglichen Vorschriften zu erlassen. Es will lediglich weiter prüfen, ob diese ihren Verpflichtungen nachkommt.


(mma)



Source link

Weiterlesen

Beliebt