Entwicklung & Code
Visual Studio 2022: Im Oktober-Update erinnert sich Copilot an frühere Wünsche
Microsoft hat seine Entwicklungsumgebung Visual Studio 2022 mit dem Oktober-Update versehen. Es bietet nun eine größere Auswahl an Large Language Models (LLMs) im Chat und bringt GitHub Copilot Memories – ein Erinnerungsvermögen für den KI-Assistenten. Darüber hinaus hat Microsoft für C++-Entwicklerinnen und -Entwickler eine Anleitung veröffentlicht, wie sie ihre Projekte auf das nächste Release Visual Studio 2026 aktualisieren können.
Weiterlesen nach der Anzeige
KI-Updates für Visual Studio 2022
Unter der Bezeichnung Copilot Memories kann sich der KI-Assistent GitHub Copilot nun an Dinge „erinnern“: Wenn Entwickler beispielsweise das Verhalten des Copiloten korrigieren, einen Standard explizit ausdrücken oder ihn darum bitten, sich etwas zu merken, erhalten sie die Aufforderung, die entsprechende Präferenz zu speichern. Diese wird in einer von drei möglichen Dateien abgespeichert: .editorconfig für Coding-Standards, CONTRIBUTING.md für Best Practices, Richtlinien und Architekturstandards oder README.md für High-Level-Informationen über das Projekt. Diese gespeicherten Informationen gelten auch für den Rest des Teams, der am Projekt arbeitet.
(Bild: coffeemill/123rf.com)

Verbesserte Klassen in .NET 10.0, Native AOT mit Entity Framework Core 10.0 und mehr: Darüber informieren .NET-Profis auf der Online-Konferenz betterCode() .NET 10.0 am 18. November 2025. Nachgelagert gibt es sechs ganztägige Workshops zu Themen wie C# 14.0, künstliche Intelligenz und Web-APIs.
Darüber hinaus können Developer im Oktober-2025-Update nun auch die Anthropic-Sprachmodelle Claude Sonnet 4.5 und Claude Haiku 4.5 verwenden. Claude Sonnet 4.5 hat soll insbesondere in der Softwareentwicklung vergleichsweise stabil und vielseitig sein, während Claude Haiku 4.5 sich durch eine erhöhte Leistung bei geringeren Kosten auszeichnet.
Neben diesen sind auch weitere neue KI-Features mit an Bord, die Microsoft auf seinem Entwicklerblog vorstellt.
C++-Projekte auf Visual Studio 2026 aktualisieren
Speziell für C++-Projekte hat Microsoft eine Anleitung verfasst, wie sie sich auf Visual Studio 2026 migrieren lassen. Derzeit ist das nächste Major Release nur innerhalb des Insider-Programms verwendbar, nähert sich jedoch der allgemeinen Verfügbarkeit.
Weiterlesen nach der Anzeige
Microsoft empfiehlt C++-Developern daher das Ausprobieren der neuen Version in Visual Studio 2026 Insiders, die sich parallel zu einer stabilen Visual-Studio-Version installieren lässt. Dann können C++-Developer zunächst bei ihrer bestehenden MSVC-Toolset-Version verbleiben und den neuen Setup-Assistenten verwenden, um fehlende Tools je nach Projekt zu installieren. Wenn sie dafür bereit sind, können sie schließlich ihre MSCV-Build-Tools auf Version 14.50 aktualisieren, die den MSVC-Compiler in Version 19.50 mitbringen.
(mai)
Entwicklung & Code
Model-Schau 1: Schlanke KI-Spezialmodelle im Trend
Beim Blick auf Large Language Models vergeht fast keine Woche ohne neue Modelle, die sich in bestimmten Nischen positionieren oder neue Techniken ausprobieren. Das hat uns dazu bewogen, regelmäßig über diese Updates zu berichten. Bei größeren Neuerungen werden wir den geplanten Zweiwochentakt unterbrechen und neue Modelle direkt untersuchen.
Weiterlesen nach der Anzeige

Prof. Dr. Christian Winkler beschäftigt sich speziell mit der automatisierten Analyse natürlichsprachiger Texte (NLP). Als Professor an der TH Nürnberg konzentriert er sich bei seiner Forschung auf die Optimierung der User Experience.
Dieses erste Update fällt etwas umfangreicher aus. Aktuelle Modelle finden sich bei Hugging Face oder durch konsequentes Mitlesen im sehr aktiven LocalLLaMa-Subreddit. Gerne nehmen wir auch Vorschläge über Modelle entgegen, die wir uns näher anschauen sollen.
Kleine Spezialmodelle
Der Trend muss nicht zu immer größeren Modellen gehen. Bei Hugging Face finden sich einige Modelle, die sehr beliebt, aber nicht besonders groß sind.
Ganz vorn steht hier VibeThinker von WeiboAI. Das Reasoning-Modell ist vor allem darauf ausgelegt, mathematische Fragen zu beantworten oder Programmcode zu erzeugen. Für diese Aufgaben ist es sehr gut geeignet. Laut den Benchmarks spielt es in der gleichen Liga wie das (ältere) Gemini 2.5 Flash und überholt teilweise sogar DeepSeek R1.
(Bild: Bridgman/AdobeStock)

Am 22. und 23. April 2026 findet die Minds Mastering Machines in Karlsruhe statt. Im Mittelpunkt der von iX und dpunkt.verlag veranstalteten Konferenz stehen praxisnahe Themen von klassischem Machine Learning bis zu LLMs und Agentic AI. Das Programm bietet unter anderem Vorträge zu folgenden Themen:
- Predictive Maintenance in der Praxis
- Kommunikationsprotokolle für Agentic AI
- Embeddings richtig verstehen
- MCP sicher im Unternehmen einsetzen
- Lokale LLMs in der Praxis
Erstaunlich ist, dass das Modell mit nur 1,5 Milliarden Parametern auskommt. Die anderen genannten Modelle haben 400-mal mehr Gewichte zu verarbeiten und sind dadurch entsprechend langsam. Die Größe spielt besonders bei Coding-Modellen eine entscheidende Rolle: Erstens will man die Modelle möglicherweise auch lokal ausführen, nachdem man sie potenziell feingetunt hat, und zweitens generieren diese Modelle sehr viele Token – je schneller das geht, desto kürzer ist die Wartezeit auf den generierten Code.
Weiterlesen nach der Anzeige
Mit vier Milliarden Parametern etwas größer, aber noch spezialisierter ist AesCoder, das mithilfe von GRPO (Group Relative Policy Optimization) auf die Erledigung von Web-Designaufgaben spezialisiert ist.
Konkurrenzfähige offene Modelle von Olmo
Auch wenn man häufig von Open-Source-Modellen spricht, sind meist lediglich die Gewichte der Modelle frei verfügbar. Nur wenige Anbieter veröffentlichen die Trainingsdaten und die Algorithmen, mit denen sie die Modelle trainiert haben. Neben Hugging Face mit SmolLM gibt es offene Trainingsdaten für das Modell Apertus aus der Schweiz und vor allem für die Olmo-Modelle vom Allen AI Institute. Letzteres braucht sich aufgrund der Investitionen durch Microsoft-Mitgründer Paul Allen keine großen Gedanken um die Finanzierung zu machen.
Besonders die jüngsten Olmo-3-Modelle integrieren viele innovative Techniken und machen damit einen gewaltigen Sprung nach vorn. Sie stehen in zwei Größen mit 7 und 32 Milliarden Parametern zur Verfügung. Das größere Modell gibt es in einer Reasoning-Variante, das kleinere zusätzlich noch als Instruction-Following-Modell ohne Reasoning. Für diejenigen, die die Modelle feintunen möchten, stellt Olmo anders als die meisten anderen Anbieter die Basismodelle zur Verfügung.
Im Vergleich zu anderen Modellen wie Qwen3 hat Olmo 3 deutlich weniger Token im Training erhalten: 5,9 Billionen aus dem Datensatz Dolma 3 Mix. Das macht sich leider in der Modellperformance bemerkbar, die nach ersten Tests nicht mit den Qwen3-Modellen in der gleichen Größenordnung mithalten kann. Die Strawberry-Challenge mit der Frage nach der Anzahl der „e“ in „Erdbeere“ (oder „r“ in „strawberry“) beantwortet das Modell konsequent falsch. Auch die deutschen Sprachfähigkeiten der kleineren Modelle sind nicht besonders gut ausgeprägt:

Bei der Antwort von Olmo 3 7B sind nicht nur die Inhalte falsch, auch die sprachliche Ausführung ist mangelhaft (Abb. 1).
(Bild: datanizing)

Das Modell Olmo 3 32B macht zwar ebenfalls Fehler, liegt aber häufiger richtig und formuliert deutlich bessere Sätze (Abb. 2).
(Bild: datanizing)
Der Artikel zu Olmo 3 enthält viele Details über die Architektur und das Training des Modells. Das gibt interessante Einblicke in den Trainingsprozess. Insbesondere das Post-Training ist sehr anspruchsvoll, weil Olmo dabei mit unterschiedlichen Datensets arbeitet, um die Qualität zu verbessern. Viele Innovationen gibt es beim Reinforcement Learning des Reasoning-Modells (bei Olmo „Thinking“ genannt).
Einige der GRPO-Optimierungen sind von anderen Modellen bekannt, kommen aber in dieser Kombination erstmals bei Olmo zum Einsatz. Das Modell setzt außerdem die weiterentwickelte Version des Verfahrens Reinforcement Learning with Verifiable Rewards (RLVR) ein, mit dem auch das neue Training von DeepSeek arbeitet. Mit RLVR kann man automatisiert überprüfen, ob Sprachmodelle die richtigen Ergebnisse vorhersagen. Die Besonderheit der weiterentwickelten Version ist, dass man damit Trainingsdaten automatisiert erzeugen kann – in Grenzen und bestimmten fachlichen Domänen.
Entwicklung & Code
Software Testing: Autismus und Softwaretests
Richard Seidl und Robert (Name geändert) sprechen in dieser Episode des Podcasts über Autismus im Softwaretesten. Robert bleibt anonym. Die Diagnose Autismus kam nach Jahren und mehreren Burnouts. Im Arbeitsalltag zehren Multitasking, spontane Meetings und ständige Kontextwechsel. Was hilft: klare Agenden, Pausen und Eins-zu-eins-Gespräche. Gleichzeitig zeigt Robert Stärken, die Tests schärfen wie eine Lupe: tiefer Fokus, Mustererkennung, starkes Gedächtnis und ehrliches Feedback. Fehler fallen ihm sofort auf, Ursachen denkt er systemisch.
Weiterlesen nach der Anzeige
Bei diesem Podcast dreht sich alles um Softwarequalität: Ob Testautomatisierung, Qualität in agilen Projekten, Testdaten oder Testteams – Richard Seidl und seine Gäste schauen sich Dinge an, die mehr Qualität in die Softwareentwicklung bringen.
Die aktuelle Ausgabe ist auch auf Richard Seidls Blog verfügbar: „Autismus und Software Test – Robert“ und steht auf YouTube bereit.
(mdo)
Entwicklung & Code
BOB-Konferenz 2026: Vorträge zur funktionalen Programmierung und mehr
Das Programm der dreizehnten BOB-Konferenz, die am 13. März 2026 wie gewohnt in Berlin im Scandic-Hotel Potsdamer Platz stattfindet, steht fest. Traditionell liegt die funktionale Programmierung im Fokus, in der Agenda für das nächste Jahr finden sich aber auch zahlreiche weitere Themen – auf eines verzichten die Organisatoren von der Active Group jedoch: KI. Die BOB 2026 soll ganz bewusst zeigen, „dass es immer noch IT jenseits der KI gibt“.
Weiterlesen nach der Anzeige
Vorträge und Tutorials
In seinem Eröffnungsvortrag zur BOB 2026 begibt sich Stefan Kaufmann auf die „Suche nach der Bedeutung in einem Magischen Konzept“. Der Medieninformatiker und Open-Data-Sachverständige geht dabei der Frage nach, was „Digitale Souveränität“ eigentlich genau sein soll.
Das weitere Programm der BOB-Konferenz umfasst 16 Talks und acht Tutorials, unter anderem zu Themen wie OCaml, Scala, Java, funktionale Softwarearchitektur und funktionale Programmierung mit SwiftUI. Über Beiträge zu Barrierefreiheit, UI-Entwicklung, Datenbank-Joins, Domain-Driven Design und Reactive Systems hinaus verspricht etwa Lutz Hühnken Einblicke in einige exotische Programmiersprachen noch jenseits von Haskell, Rust, Whitespace oder Brainf**k.
Registrierung mit Early-Bird-Rabatt eröffnet
Die BOB 2026 bietet sowohl englischsprachige als auch deutsche Vorträge und Tutorials an. Mit der Veröffentlichung des Programms hat die Registrierung begonnen. Bis zum 16. Januar 2026 gilt der Early-Bird-Rabatt. Auf Anfrage gibt es verschiedene ermäßigte Tickets sowie einige kostenlose für unterrepräsentierte Gruppen. Weitere Details lassen sich der Ankündigung entnehmen.
(map)
-
UX/UI & Webdesignvor 2 MonatenIllustrierte Reise nach New York City › PAGE online
-
Künstliche Intelligenzvor 2 MonatenAus Softwarefehlern lernen – Teil 3: Eine Marssonde gerät außer Kontrolle
-
Künstliche Intelligenzvor 2 Monaten
Top 10: Die beste kabellose Überwachungskamera im Test
-
UX/UI & Webdesignvor 3 MonatenFake It Untlil You Make It? Trifft diese Kampagne den Nerv der Zeit? › PAGE online
-
UX/UI & Webdesignvor 2 MonatenSK Rapid Wien erneuert visuelle Identität
-
Entwicklung & Codevor 4 WochenKommandozeile adé: Praktische, grafische Git-Verwaltung für den Mac
-
Künstliche Intelligenzvor 2 MonatenNeue PC-Spiele im November 2025: „Anno 117: Pax Romana“
-
Künstliche Intelligenzvor 2 MonatenDonnerstag: Deutsches Flugtaxi-Start-up am Ende, KI-Rechenzentren mit ARM-Chips
