Connect with us

Entwicklung & Code

KI-Überblick 3: Was sind neuronale Netze – und wie funktionieren sie?


Neuronale Netze gelten als Herzstück des modernen maschinellen Lernens. Sie sind die Grundlage zahlreicher Anwendungen – von der Spracherkennung über die Bildverarbeitung bis hin zu generativen Sprachmodellen wie GPT-5.

Oft klingen sie nach einem hochkomplexen, schwer durchschaubaren Konstrukt. Dabei basieren sie auf einem vergleichsweise einfachen Prinzip: der Verknüpfung vieler kleiner, gleichförmiger Recheneinheiten zu einem Netz, das in der Lage ist, selbst hochdimensionale Zusammenhänge zu modellieren.


the next big thing – Golo Roden

the next big thing – Golo Roden

Golo Roden ist Gründer und CTO von the native web GmbH. Er beschäftigt sich mit der Konzeption und Entwicklung von Web- und Cloud-Anwendungen sowie -APIs, mit einem Schwerpunkt auf Event-getriebenen und Service-basierten verteilten Architekturen. Sein Leitsatz lautet, dass Softwareentwicklung kein Selbstzweck ist, sondern immer einer zugrundeliegenden Fachlichkeit folgen muss.

Dieser Beitrag erläutert die Grundstruktur neuronaler Netze, erklärt die wichtigsten Begriffe und zeigt, warum bereits einfache Varianten erstaunlich leistungsfähig sein können.

Neuronale Netze wurden ursprünglich von der Struktur des menschlichen Gehirns inspiriert. In der Biologie bestehen Gehirne aus Neuronen, die über Synapsen miteinander verbunden sind und elektrische Signale verarbeiten. Diese Analogie diente als Vorbild – allerdings ist sie oberflächlich zu verstehen. Die „Neuronen“ in einem künstlichen neuronalen Netz sind einfache mathematische Funktionen, die Eingabewerte gewichten, aufsummieren und das Ergebnis durch eine sogenannte Aktivierungsfunktion schicken. Es handelt sich also nicht um echte Nachbildungen biologischer Vorgänge, sondern um abstrahierte Rechenelemente.

Ein künstliches neuronales Netz besteht aus mehreren Schichten:

  • Eingabeschicht (Input Layer): Die Eingabeschicht nimmt die Rohdaten auf. Jede Eingabevariable entspricht einem Knoten in dieser Schicht.
  • Verborgene Schichten (Hidden Layers): Verborgene Schichten bestehen aus Neuronen, die die Daten transformieren. Je nach Anzahl und Aufbau dieser Schichten spricht man von flachen oder tiefen Netzen.
  • Ausgabeschicht (Output Layer): Die Ausgabeschicht gibt das Ergebnis des Netzes zurück – zum Beispiel eine Klassifikation oder einen numerischen Wert.

Jedes Neuron einer Schicht ist mit den Neuronen der nächsten Schicht verbunden. Diese Verbindungen tragen sogenannte Gewichte, die während des Trainings angepasst werden. Zusätzlich besitzt jedes Neuron einen Bias, also eine Verschiebung, die unabhängig von den Eingaben wirkt.

Ein typisches Neuron berechnet eine gewichtete Summe seiner Eingaben, addiert den Bias und wendet dann eine Aktivierungsfunktion an. Diese Funktion entscheidet, ob und wie stark das Neuron „feuert“. Gängige Aktivierungsfunktionen sind die ReLU-Funktion (Rectified Linear Unit) oder die Sigmoid-Funktion.

Ein einzelnes Neuron kann nur sehr einfache Abbildungen realisieren – etwa eine lineare Trennung zwischen zwei Klassen. Erst durch die Kombination vieler Neuronen in mehreren Schichten entsteht ein Netz, das auch komplexe, nicht lineare Zusammenhänge modellieren kann. Jede Schicht lernt dabei gewissermaßen eine andere Abstraktionsebene: In einem Netz zur Bilderkennung erkennen die ersten Schichten möglicherweise einfache Kanten, die mittleren geometrische Formen und die letzten komplexe Objekte wie Gesichter oder Schriftzeichen.

Diese Hierarchiebildung ist ein entscheidender Erfolgsfaktor neuronaler Netze. Sie macht es möglich, dass Systeme mit vergleichsweise wenig explizitem Wissen aus Beispieldaten lernen, was relevante Merkmale sind.

Das Training eines neuronalen Netzes erfolgt in zwei Schritten: dem Vorwärtsdurchlauf (Forward Propagation) und der Rückpropagierung (Backpropagation).

  1. Vorwärtsdurchlauf: Die Eingabedaten werden Schicht für Schicht durch das Netz geleitet, bis eine Ausgabe entsteht.
  2. Fehlerberechnung: Die Ausgabe wird mit dem erwarteten Ergebnis verglichen. Daraus ergibt sich ein Fehlerwert (zum Beispiel durch eine Verlustfunktion wie die mittlere quadratische Abweichung).
  3. Rückpropagierung: Der Fehler wird von der Ausgabeschicht rückwärts durch das Netz propagiert. Dabei werden die Gewichte schrittweise so angepasst, dass der Fehler beim nächsten Durchlauf kleiner wird. Dieser Prozess basiert auf Gradientenverfahren und wiederholt sich über viele Iterationen.

Dieser Ablauf ist rein rechnerisch. Das Netz „versteht“ dabei nichts im menschlichen Sinn – es passt lediglich Zahlenwerte an, um eine mathematische Funktion zu approximieren, die möglichst gut zu den Trainingsdaten passt.

Neuronale Netze sind leistungsfähig, aber nicht universell einsetzbar. Sie benötigen typischerweise große Mengen an Trainingsdaten, um verlässlich zu funktionieren. Zudem sind sie anfällig für Overfitting, also die Überanpassung an Trainingsdaten, wodurch sie bei neuen Eingaben schlechter generalisieren.

Ein weiterer Kritikpunkt ist die eingeschränkte Erklärbarkeit: Gerade tiefe Netze sind oft schwer zu analysieren, weil nicht klar ist, welche internen Repräsentationen sie gelernt haben. Deshalb wird an Explainable-AI-Verfahren geforscht, die mehr Transparenz ermöglichen sollen.

In der nächsten Folge wenden wir uns dem Deep Learning zu – also der Frage, was neuronale Netze „tief“ macht, warum Tiefe oft hilfreich ist und wie typische Architekturen wie Convolutional Neural Networks (CNNs) und Recurrent Neural Networks (RNNs) funktionieren. Damit rücken wir ein Stück näher an die Methoden heran, die viele moderne KI-Anwendungen ermöglichen.


(rme)



Source link

Entwicklung & Code

EventSourcingDB 1.1 bietet flexiblere Konsistenzsteuerung und signierte Events


Version 1.1 der auf Event Sourcing spezialisierten Datenbank EventSourcingDB flexibilisiert die Konsistenzsteuerung und erhöht die Sicherheit mit digitalen Signaturen für Events. Event Sourcing ist ein Architekturverfahren, das alle Veränderungen des Zustands einer Anwendung als Sequenz von Events abbildet.

In der neuen Version der EventSourcingDB lassen Konsistenzgrenzen nicht nur über Aggregate festlegen, sondern auch flexibel über EventQL-Abfragen beschreiben. Mit diesen Dynamic Consistency Boundaries (DCBs) definieren Teams genau, wann strikte Konsistenz notwendig ist und wo Eventual Consistency konform zur offiziellen Spezifikation genügt. Dazu implementierte der Freiburger Hersteller the native web eine neue Precondition, die die Datenbank vor dem Schreiben von Events prüft.

Ebenfalls neu sind per Ed25519 signierte Events. Die Datenbank erzeugt die Signaturen on-the-fly, was Schlüsselwechsel ermöglicht, ohne bestehende Events anpassen zu müssen. Client-SDKs unterstützen die Verifikation inklusive Hash-Prüfung in Go und JavaScript, weitere Sprachen sollen folgen. Damit lassen sich Integrität und Authentizität von Events gegenüber Auditoren und Regulatoren zuverlässig nachweisen.

Im Detail gibt es weitere Verbesserungen: Der integrierte EventQL-Editor bietet Autovervollständigung für Event-Typen, neue sowie konsistentere API-Endpunkte erleichtern den Zugriff, und das Management-UI wurde leicht überarbeitet. Zahlreiche Optimierungen im Hintergrund sollen Stabilität und Entwicklerfreundlichkeit erhöhen.


Scrennshot Abfragen

Scrennshot Abfragen

Die Abfragen in der EventSourcingDB erfolgen über die Sprache EventQL.

(Bild: the native web)

Die EventSourcingDB steht als Docker-Image und als Binary für Linux, macOS und Windows bereit. Offizielle SDKs existieren für Go, JavaScript/TypeScript, .NET, PHP, Python, Rust und die JVM. Die Nutzung ist bis 25.000 Events pro Instanz kostenlos. Zudem startet der Anbieter eine gemanagte Version als private Beta. Sie richtet sich an Teams, die die Datenbank nutzen möchten, ohne selbst Infrastruktur betreiben zu müssen.


(who)



Source link

Weiterlesen

Entwicklung & Code

programmier.bar: Cloud-Exit mit Andreas Lehr


Cloud-Exit ist aktuell ein heiß diskutiertes Thema – spätestens seit Firmen wie Basecamp angekündigt haben, die Cloud zu verlassen und wieder auf eigene Infrastruktur zu setzen.

In dieser Podcastfolge sprechen Dennis Becker und Jan Gregor Emge-Triebel mit Andreas Lehr, Berater für Cloud- und DevOps-Themen und Herausgeber des Podcasts „Happy Bootstrapping“ sowie des Newsletters „Alles nur gecloud“. Gemeinsam diskutieren sie, was neben hohen Kosten noch für einen Cloud-Exit spricht: von Vendor-Lock-ins über Datenschutz bis hin zu Performance und digitaler Souveränität. Dabei berichtet Andreas Lehr von realen Erfahrungen aus der Praxis.

Empfohlener redaktioneller Inhalt

Mit Ihrer Zustimmung wird hier ein externer Inhalt geladen.

Einig sind sich die drei, dass Hyperscaler durchaus weiter ihre Berechtigung haben – aber wo genau fängt ein Cloud-Exit an, und wie nah muss ein Unternehmen seinen eigenen Servern wieder kommen, damit sich der Schritt lohnt?

Die aktuelle Ausgabe des Podcasts steht auch im Blog der programmier.bar bereit: „Cloud-Exit mit Andreas Lehr„. Fragen und Anregungen gerne per Mail oder via Mastodon, Bluesky, LinkedIn oder Instagram.


(mai)





Source link

Weiterlesen

Entwicklung & Code

Java 25: Neue Features – nicht so bekannt, aber wichtig


Im September 2025 erscheint das OpenJDK 25 mit 18 Java Enhancement Proposals. Die bekannteren Funktionen haben wir uns bereits im vorangegangenen Post angeschaut. Jetzt werfen wir einen Blick auf die Themen, die bei den meisten Entwicklerinnen und Entwicklern etwas weniger Aufmerksamkeit erregen. Mit dabei sind Verbesserungen beim Profiling und Beobachten von laufenden Java-Anwendungen, beim Start und Warm-up, beim Speicherverbrauch und kleinere Änderungen bei Garbage Collectors sowie Erweiterungen bei der Unterstützung von Kryptografie.


Neuigkeiten von der Insel - Falk Sippach

Neuigkeiten von der Insel - Falk Sippach

Falk Sippach ist bei der embarc Software Consulting GmbH als Softwarearchitekt, Berater und Trainer stets auf der Suche nach dem Funken Leidenschaft, den er bei seinen Teilnehmern, Kunden und Kollegen entfachen kann. Bereits seit über 15 Jahren unterstützt er in meist agilen Softwareentwicklungsprojekten im Java-Umfeld. Als aktiver Bestandteil der Community (Mitorganisator der JUG Darmstadt) teilt er zudem sein Wissen gern in Artikeln, Blog-Beiträgen, sowie bei Vorträgen auf Konferenzen oder User Group Treffen und unterstützt bei der Organisation diverser Fachveranstaltungen. Falk twittert unter @sippsack.

Das Entfernen des Quellcodes und Build-Supports für den 32-Bit-x86-Port (nach Deprecation in JDK 24 via JEP 501) zielt darauf ab, neue Features nicht länger mit 32-Bit-Fallbacks bedienen zu müssen, alle 32-Bit-x86-Sonderpfade zu streichen und Build/Test-Infrastruktur zu vereinfachen. Nicht betroffen sind der 32-Bit-Support anderer Architekturen und frühere JDK-Releases. Der Pflegeaufwand stand in keinem Verhältnis zum Nutzen und das Entfernen beschleunigt die Weiterentwicklung (z. B. bei Loom, FFM API, Vector API, …).


Online-Konferenz zu Java 2025

Online-Konferenz zu Java 2025

(Bild: Playful Creatives/Adobe Stock))

Am 14. Oktober dreht sich bei der betterCode() Java 2025 alles um das für September geplante Java 25. Die von iX und dpunkt verlag ausgerichtete Online-Konferenz behandelt in sechs Vorträgen die wesentlichen Neuerungen. Eine Keynote von Adam Bien zu 30 Jahren Java rundet den Tag ab.

Das Entwicklerteam hat den JDK Flight Recorder (JFR) so erweitert, dass er auf Linux den CPU-Zeit-Timer des Kernels nutzt und damit präzisere CPU-Profile erstellt. Und das auch dann, wenn Java-Code gerade native Bibliotheken ausführt. Bisher stützte sich JFR vor allem auf einen „Execution Sampler“, der in festen Echtzeit-Intervallen (z. B. alle 20 ms) Java-Stacks zieht. Dabei können Threads in nativem Code übersehen, Proben verpasst und gegebenenfalls nur ein Teil der Threads erfasst werden.

Mit CPU-Zeit-Profiling bildet JFR die tatsächlich verbrauchten CPU-Zyklen ab und vermeidet unsichere, interne Schnittstellen, wie sie manche externe Tools verwenden. Ein Sortieralgorithmus verbringt zum Beispiel seine gesamte Laufzeit auf der CPU und taucht entsprechend stark im CPU-Profil auf. Eine Methode, die meist auf Daten aus einem Socket wartet, beansprucht hingegen kaum CPU-Zeit und erscheint folglich nur geringfügig im Profil.

Der JFR soll stabiler werden, indem er Java-Thread-Stacks nur noch an Safepoints traversiert und dabei den bekannten Safepoint-Bias so weit wie möglich reduziert. Bisher nahm der JFR in festen Intervallen (z. B. alle 20 ms) asynchron Samples auch außerhalb von Safepoints auf. Das erforderte Heuristiken zum Stack-Parsing, die ineffizient waren und im Fehlerfall sogar JVM-Crashes auslösen konnten (etwa bei gleichzeitigem Class-Unloading). Künftig wird die Profilerstellung der Wanduhrzeit (wall-clock time) weiter unterstützt, aber mit einem robusteren Verfahren, das Genauigkeit und Ausfallsicherheit besser ausbalanciert.

Dieses JEP erweitert den JDK Flight Recorder um eine Bytecode-Instrumentierung, die jeden ausgewählten Methodenaufruf exakt misst und mit Stacktrace aufzeichnet – im Gegensatz zu stichprobenbasiertem Profiling. Methoden lassen sich ohne Codeänderungen zielgenau per Kommandozeile, Konfigurationsdatei, jcmd oder JMX auswählen. Nicht vorgesehen sind das Aufzeichnen von Argumenten/Feldwerten, das Tracen nicht-bytecodierter Methoden (z. B. native, abstract) sowie das gleichzeitige Instrumentieren sehr vieler Methoden. In solchen Fällen bleibt Sampling der richtige Ansatz. Um lange Startzeiten zu analysieren, lassen sich statische Initialisierer ausgewählter Klassen gezielt tracen. So wird sichtbar, welche Initialisierung sich auf später verschieben lässt oder wo ein jüngst eingespielter Fix tatsächlich Laufzeit spart.

Dieses JEP vereinfacht das Erzeugen von Ahead-of-Time-Caches (AOT), die den Java-Start deutlich beschleunigen: Für gängige Fälle soll ein einziger Schritt genügen, der Trainingslauf und Cache-Erstellung kombiniert. Ziel ist es, die bislang nötige Zwei-Phasen-Prozedur (erst record, dann create mit separater AOT-Konfiguration) abzulösen – ohne an Ausdrucksstärke zu verlieren und ohne neue AOT-Optimierungen einzuführen. Ein Beispiel aus dem Status quo: Heute braucht man zwei java-Aufrufe und bleibt mit einer temporären *.aotconf-Datei zurück. Künftig entfällt dieser Ballast, was unter anderem Frameworks wie JRuby bei eigenen Trainingsläufen entgegenkommt. Für Spezialfälle bleiben die expliziten AOT-Modi und Konfigurationsoptionen weiterhin verfügbar.

Die JVM (Java Virtual Machine) kann jetzt beim Start Methodenausführungsprofile aus einem früheren Lauf laden, sodass der JIT direkt die voraussichtlich heißen Methoden kompiliert, statt zunächst Profile sammeln zu müssen. Die Profile werden in einem Training Run erzeugt und über den bestehenden AOT-Cache bereitgestellt. Dafür sind keine Codeänderungen und keine neuen Workflows nötig. Warm-up kostet heute Zeit, weil HotSpot erst während der Produktion herausfindet, welche Methoden es zu optimieren gilt. Verlagert man das Profiling in den Training Run, erreicht die Anwendung in Produktion schneller ihre Spitzenleistung. Ein Webdienst beispielsweise, der sonst erst nach einigen Minuten Profil-Sammeln voll performant ist, kann mit vorab aufgezeichneten Profilen schon beim Start die kritischen Request-Pfade kompilieren und so schneller unter Last reagieren.

Dieses JEP führt eine einfache API ein, um kryptografische Objekte — Schlüssel, Zertifikate und Sperrlisten — in das weit verbreitete PEM-Textformat (RFC 7468) zu kodieren und daraus wieder Objekte zu dekodieren. Sie unterstützt die Standardrepräsentationen PKCS#8 (Private Keys), X.509 (Public Keys, Zertifikate, CRLs) sowie PKCS#8 v2.0 (verschlüsselte Private Keys und asymmetrische Schlüssel). Bisher fehlte in Java eine komfortable PEM-API. Entwickler mussten Base64, Header/Footer-Parsing, Factory-Auswahl und Algorithmus-Erkennung selbst erledigen. Die neue Preview-API reduziert diesen Boilerplate deutlich.

Dieses JEP finalisiert (unverändert gegenüber der Preview in JDK 24) eine API für Key Derivation Functions (KDFs), etwa HKDF (RFC 5869) und Argon2 (RFC 9106). Sie ermöglicht den Einsatz von KDFs in KEM/HPKE-Szenarien (z. B. ML-KEM, Hybrid Key Exchange in TLS 1.3), erlaubt PKCS#11-basierte Implementierungen und räumt auf, indem JDK-Komponenten wie TLS 1.3 und DHKEM auf die neue API statt auf interne HKDF-Logik umgestellt werden. Aus einem gemeinsamen Geheimnis (z. B. ECDH-Shared-Secret) und einem Salt lässt sich per HKDF deterministisch ein Satz Sitzungsschlüssel für Verschlüsselung und MAC ableiten. PBKDF1/2 wandern übrigens nicht in die neue API, sie bleiben wie bisher über SecretKeyFactory nutzbar.

Die kompakten Objekt-Header gelten mit dem Update nicht mehr als experimentell, sondern als offizielles Produktfeature. Sie gelten jedoch nicht als Standard-Layout. Seit ihrer Einführung in JDK 24 (JEP 450) haben sie sich in Stabilität und Performance bewährt – getestet mit der vollständigen JDK-Testsuche bei Oracle und in Hunderten von Amazon-Services (teils auf JDK 21/17 zurückportiert). Experimente zeigen deutliche Vorteile: bis zu 22 Prozent weniger Heap, 8 Prozent weniger CPU-Zeit, 15 Prozent weniger GCs (G1/Parallel), und ein hochparalleler JSON-Parser läuft zehn Prozent schneller. Damit verbessert der geringere Overhead pro Objekt die Speichernutzung und Cache-Lokalität, was spürbar Start-up und Durchsatz zugutekommt.

Der generationale Modus des Shenandoah-GC wechselt vom experimentellen in den Produktstatus (eingeführt als Experiment in JDK 24 via JEP 404). Der Standard bleibt unverändert, per Default nutzt Shenandoah weiterhin eine Generation. Die Umstufung basiert auf zahlreichen Stabilitäts- und Performance-Verbesserungen sowie umfangreichen Tests (u. a. DaCapo, SPECjbb2015, SPECjvm2008, Heapothesys); Anwender berichten von erfolgreichen Einsätzen unter Last. Zum Aktivieren des generationalen Modus ist -XX:+UnlockExperimentalVMOptions nicht mehr nötig. Alle übrigen Optionen und Defaults bleiben gleich und bestehende Startskripte funktionieren weiter.

Beim Blick auf die Vielzahl der sehr unterschiedlichen neuen und erneuerten Features zeigt sich, dass Java 25 auch wieder ein spannendes Release ist. Auch wenn für uns Entwickler auf den ersten Blick scheinbar gar nicht so viel Neues dabei ist. Vieles sind Wiedervorlagen aus früheren Preview-Versionen. Aber genau das zeigt, wie stabil und durchdacht sich Java weiterentwickelt. Und außerdem ist enorm viel unter der Haube passiert: von Performance-Optimierungen über Sicherheitsverbesserungen bis hin zu Weichenstellungen für die Zukunft, etwa in der Kryptografie und der Speicherverwaltung. Java bleibt damit eine moderne, leistungsfähige Plattform. Und im März 2026 steht mit dem OpenJDK 26 die nächste Version vor der Tür. Die Versionen 25 und 26 sind übrigens die einzigen, die mit der Jahreszahl ihrer Erscheinung übereinstimmen. Ab Java 27 müssen wir dann wieder überlegen, welche Version gerade aktuell ist.

Zum Vertiefen der hier genannten JEPs empfiehlt sich als Startpunkt die OpenJDK-25-Projektseite. Und es gibt natürlich auch eine ausführliche Liste aller Änderungen in den Release Notes. Zudem lohnt sich auch immer mal ein Blick auf die JEP-Drafts. Dort warten noch einige Themen auf ihre Veröffentlichung, wie Light-Weight JSON API, Null-Restricted and Nullable Types, Value Classes and Objects oder Integrity by Default. Uns Java-Entwicklern dürfte in Zukunft also nicht so schnell langweilig werden.


(mdo)



Source link

Weiterlesen

Beliebt