Connect with us

Entwicklung & Code

Java 25: Neue Features – nicht so bekannt, aber wichtig


Im September 2025 erscheint das OpenJDK 25 mit 18 Java Enhancement Proposals. Die bekannteren Funktionen haben wir uns bereits im vorangegangenen Post angeschaut. Jetzt werfen wir einen Blick auf die Themen, die bei den meisten Entwicklerinnen und Entwicklern etwas weniger Aufmerksamkeit erregen. Mit dabei sind Verbesserungen beim Profiling und Beobachten von laufenden Java-Anwendungen, beim Start und Warm-up, beim Speicherverbrauch und kleinere Änderungen bei Garbage Collectors sowie Erweiterungen bei der Unterstützung von Kryptografie.


Neuigkeiten von der Insel - Falk Sippach

Neuigkeiten von der Insel - Falk Sippach

Falk Sippach ist bei der embarc Software Consulting GmbH als Softwarearchitekt, Berater und Trainer stets auf der Suche nach dem Funken Leidenschaft, den er bei seinen Teilnehmern, Kunden und Kollegen entfachen kann. Bereits seit über 15 Jahren unterstützt er in meist agilen Softwareentwicklungsprojekten im Java-Umfeld. Als aktiver Bestandteil der Community (Mitorganisator der JUG Darmstadt) teilt er zudem sein Wissen gern in Artikeln, Blog-Beiträgen, sowie bei Vorträgen auf Konferenzen oder User Group Treffen und unterstützt bei der Organisation diverser Fachveranstaltungen. Falk twittert unter @sippsack.

Das Entfernen des Quellcodes und Build-Supports für den 32-Bit-x86-Port (nach Deprecation in JDK 24 via JEP 501) zielt darauf ab, neue Features nicht länger mit 32-Bit-Fallbacks bedienen zu müssen, alle 32-Bit-x86-Sonderpfade zu streichen und Build/Test-Infrastruktur zu vereinfachen. Nicht betroffen sind der 32-Bit-Support anderer Architekturen und frühere JDK-Releases. Der Pflegeaufwand stand in keinem Verhältnis zum Nutzen und das Entfernen beschleunigt die Weiterentwicklung (z. B. bei Loom, FFM API, Vector API, …).


Online-Konferenz zu Java 2025

Online-Konferenz zu Java 2025

(Bild: Playful Creatives/Adobe Stock))

Am 14. Oktober dreht sich bei der betterCode() Java 2025 alles um das für September geplante Java 25. Die von iX und dpunkt verlag ausgerichtete Online-Konferenz behandelt in sechs Vorträgen die wesentlichen Neuerungen. Eine Keynote von Adam Bien zu 30 Jahren Java rundet den Tag ab.

Das Entwicklerteam hat den JDK Flight Recorder (JFR) so erweitert, dass er auf Linux den CPU-Zeit-Timer des Kernels nutzt und damit präzisere CPU-Profile erstellt. Und das auch dann, wenn Java-Code gerade native Bibliotheken ausführt. Bisher stützte sich JFR vor allem auf einen „Execution Sampler“, der in festen Echtzeit-Intervallen (z. B. alle 20 ms) Java-Stacks zieht. Dabei können Threads in nativem Code übersehen, Proben verpasst und gegebenenfalls nur ein Teil der Threads erfasst werden.

Mit CPU-Zeit-Profiling bildet JFR die tatsächlich verbrauchten CPU-Zyklen ab und vermeidet unsichere, interne Schnittstellen, wie sie manche externe Tools verwenden. Ein Sortieralgorithmus verbringt zum Beispiel seine gesamte Laufzeit auf der CPU und taucht entsprechend stark im CPU-Profil auf. Eine Methode, die meist auf Daten aus einem Socket wartet, beansprucht hingegen kaum CPU-Zeit und erscheint folglich nur geringfügig im Profil.

Der JFR soll stabiler werden, indem er Java-Thread-Stacks nur noch an Safepoints traversiert und dabei den bekannten Safepoint-Bias so weit wie möglich reduziert. Bisher nahm der JFR in festen Intervallen (z. B. alle 20 ms) asynchron Samples auch außerhalb von Safepoints auf. Das erforderte Heuristiken zum Stack-Parsing, die ineffizient waren und im Fehlerfall sogar JVM-Crashes auslösen konnten (etwa bei gleichzeitigem Class-Unloading). Künftig wird die Profilerstellung der Wanduhrzeit (wall-clock time) weiter unterstützt, aber mit einem robusteren Verfahren, das Genauigkeit und Ausfallsicherheit besser ausbalanciert.

Dieses JEP erweitert den JDK Flight Recorder um eine Bytecode-Instrumentierung, die jeden ausgewählten Methodenaufruf exakt misst und mit Stacktrace aufzeichnet – im Gegensatz zu stichprobenbasiertem Profiling. Methoden lassen sich ohne Codeänderungen zielgenau per Kommandozeile, Konfigurationsdatei, jcmd oder JMX auswählen. Nicht vorgesehen sind das Aufzeichnen von Argumenten/Feldwerten, das Tracen nicht-bytecodierter Methoden (z. B. native, abstract) sowie das gleichzeitige Instrumentieren sehr vieler Methoden. In solchen Fällen bleibt Sampling der richtige Ansatz. Um lange Startzeiten zu analysieren, lassen sich statische Initialisierer ausgewählter Klassen gezielt tracen. So wird sichtbar, welche Initialisierung sich auf später verschieben lässt oder wo ein jüngst eingespielter Fix tatsächlich Laufzeit spart.

Dieses JEP vereinfacht das Erzeugen von Ahead-of-Time-Caches (AOT), die den Java-Start deutlich beschleunigen: Für gängige Fälle soll ein einziger Schritt genügen, der Trainingslauf und Cache-Erstellung kombiniert. Ziel ist es, die bislang nötige Zwei-Phasen-Prozedur (erst record, dann create mit separater AOT-Konfiguration) abzulösen – ohne an Ausdrucksstärke zu verlieren und ohne neue AOT-Optimierungen einzuführen. Ein Beispiel aus dem Status quo: Heute braucht man zwei java-Aufrufe und bleibt mit einer temporären *.aotconf-Datei zurück. Künftig entfällt dieser Ballast, was unter anderem Frameworks wie JRuby bei eigenen Trainingsläufen entgegenkommt. Für Spezialfälle bleiben die expliziten AOT-Modi und Konfigurationsoptionen weiterhin verfügbar.

Die JVM (Java Virtual Machine) kann jetzt beim Start Methodenausführungsprofile aus einem früheren Lauf laden, sodass der JIT direkt die voraussichtlich heißen Methoden kompiliert, statt zunächst Profile sammeln zu müssen. Die Profile werden in einem Training Run erzeugt und über den bestehenden AOT-Cache bereitgestellt. Dafür sind keine Codeänderungen und keine neuen Workflows nötig. Warm-up kostet heute Zeit, weil HotSpot erst während der Produktion herausfindet, welche Methoden es zu optimieren gilt. Verlagert man das Profiling in den Training Run, erreicht die Anwendung in Produktion schneller ihre Spitzenleistung. Ein Webdienst beispielsweise, der sonst erst nach einigen Minuten Profil-Sammeln voll performant ist, kann mit vorab aufgezeichneten Profilen schon beim Start die kritischen Request-Pfade kompilieren und so schneller unter Last reagieren.

Dieses JEP führt eine einfache API ein, um kryptografische Objekte — Schlüssel, Zertifikate und Sperrlisten — in das weit verbreitete PEM-Textformat (RFC 7468) zu kodieren und daraus wieder Objekte zu dekodieren. Sie unterstützt die Standardrepräsentationen PKCS#8 (Private Keys), X.509 (Public Keys, Zertifikate, CRLs) sowie PKCS#8 v2.0 (verschlüsselte Private Keys und asymmetrische Schlüssel). Bisher fehlte in Java eine komfortable PEM-API. Entwickler mussten Base64, Header/Footer-Parsing, Factory-Auswahl und Algorithmus-Erkennung selbst erledigen. Die neue Preview-API reduziert diesen Boilerplate deutlich.

Dieses JEP finalisiert (unverändert gegenüber der Preview in JDK 24) eine API für Key Derivation Functions (KDFs), etwa HKDF (RFC 5869) und Argon2 (RFC 9106). Sie ermöglicht den Einsatz von KDFs in KEM/HPKE-Szenarien (z. B. ML-KEM, Hybrid Key Exchange in TLS 1.3), erlaubt PKCS#11-basierte Implementierungen und räumt auf, indem JDK-Komponenten wie TLS 1.3 und DHKEM auf die neue API statt auf interne HKDF-Logik umgestellt werden. Aus einem gemeinsamen Geheimnis (z. B. ECDH-Shared-Secret) und einem Salt lässt sich per HKDF deterministisch ein Satz Sitzungsschlüssel für Verschlüsselung und MAC ableiten. PBKDF1/2 wandern übrigens nicht in die neue API, sie bleiben wie bisher über SecretKeyFactory nutzbar.

Die kompakten Objekt-Header gelten mit dem Update nicht mehr als experimentell, sondern als offizielles Produktfeature. Sie gelten jedoch nicht als Standard-Layout. Seit ihrer Einführung in JDK 24 (JEP 450) haben sie sich in Stabilität und Performance bewährt – getestet mit der vollständigen JDK-Testsuche bei Oracle und in Hunderten von Amazon-Services (teils auf JDK 21/17 zurückportiert). Experimente zeigen deutliche Vorteile: bis zu 22 Prozent weniger Heap, 8 Prozent weniger CPU-Zeit, 15 Prozent weniger GCs (G1/Parallel), und ein hochparalleler JSON-Parser läuft zehn Prozent schneller. Damit verbessert der geringere Overhead pro Objekt die Speichernutzung und Cache-Lokalität, was spürbar Start-up und Durchsatz zugutekommt.

Der generationale Modus des Shenandoah-GC wechselt vom experimentellen in den Produktstatus (eingeführt als Experiment in JDK 24 via JEP 404). Der Standard bleibt unverändert, per Default nutzt Shenandoah weiterhin eine Generation. Die Umstufung basiert auf zahlreichen Stabilitäts- und Performance-Verbesserungen sowie umfangreichen Tests (u. a. DaCapo, SPECjbb2015, SPECjvm2008, Heapothesys); Anwender berichten von erfolgreichen Einsätzen unter Last. Zum Aktivieren des generationalen Modus ist -XX:+UnlockExperimentalVMOptions nicht mehr nötig. Alle übrigen Optionen und Defaults bleiben gleich und bestehende Startskripte funktionieren weiter.

Beim Blick auf die Vielzahl der sehr unterschiedlichen neuen und erneuerten Features zeigt sich, dass Java 25 auch wieder ein spannendes Release ist. Auch wenn für uns Entwickler auf den ersten Blick scheinbar gar nicht so viel Neues dabei ist. Vieles sind Wiedervorlagen aus früheren Preview-Versionen. Aber genau das zeigt, wie stabil und durchdacht sich Java weiterentwickelt. Und außerdem ist enorm viel unter der Haube passiert: von Performance-Optimierungen über Sicherheitsverbesserungen bis hin zu Weichenstellungen für die Zukunft, etwa in der Kryptografie und der Speicherverwaltung. Java bleibt damit eine moderne, leistungsfähige Plattform. Und im März 2026 steht mit dem OpenJDK 26 die nächste Version vor der Tür. Die Versionen 25 und 26 sind übrigens die einzigen, die mit der Jahreszahl ihrer Erscheinung übereinstimmen. Ab Java 27 müssen wir dann wieder überlegen, welche Version gerade aktuell ist.

Zum Vertiefen der hier genannten JEPs empfiehlt sich als Startpunkt die OpenJDK-25-Projektseite. Und es gibt natürlich auch eine ausführliche Liste aller Änderungen in den Release Notes. Zudem lohnt sich auch immer mal ein Blick auf die JEP-Drafts. Dort warten noch einige Themen auf ihre Veröffentlichung, wie Light-Weight JSON API, Null-Restricted and Nullable Types, Value Classes and Objects oder Integrity by Default. Uns Java-Entwicklern dürfte in Zukunft also nicht so schnell langweilig werden.


(mdo)



Source link

Entwicklung & Code

Flexibel und pflegeleicht: Testing ohne Mocks


close notice

This article is also available in
English.

It was translated with technical assistance and editorially reviewed before publication.

Robuste, automatisierte Tests sind feste Bestandteile der agilen Softwareentwicklung. Da Anforderungen und Rahmenbedingungen sich stetig ändern, müssen Entwicklerinnen und Entwickler kontinuierlich in der Lage sein, ihre Architektur anzupassen. Ihr Code muss wachsen und sich weiterentwickeln können. Sie müssen laufend bestehende Features erweitern, anpassen, umsortieren, zusammenführen oder aufteilen. Dazu benötigen sie die Unterstützung einer schnellen, verlässlichen und robusten Testsuite, die bestehende Funktionen der Software nicht beeinträchtigt.




Martin Grandrath ist Software-Developer und entwickelt seit über 15 Jahren Applikationen mit Web-Technologien. Seine Schwerpunkte sind neben Frontend-Architektur vor allem Software-Craftsmanship und testgetriebene Entwicklung. Seit 2023 arbeitet er als Senior IT-Consultant bei codecentric.

Auf Mocks basierende Tests verursachen häufig zusätzlichen Pflegeaufwand beim Refaktorieren, also Änderungen an der Codestruktur, die die Arbeit mit dem Code insgesamt vereinfachen, das Verhalten des Systems aber nicht verändern. Die Art und Weise, wie Mocks in der Praxis meist zum Einsatz kommen, führt zu einer Kopplung von Tests und Implementierungsdetails. Änderungen an diesen Details erfordern Anpassungen der Tests, was zulasten der Entwicklungsgeschwindigkeit geht.

Dieser Artikel zeigt auf, welche Kompromisse mit auf Mocks basierenden Tests verbunden sind und stellt mit dem Nullable-Entwurfsmuster von James Shore eine Alternative vor.

Mock-Objekte oder kurz Mocks (englisch für „Attrappe“) sind eine Unterkategorie der Test-Doubles, die in Unit Tests als Platzhalter für Produktionsobjekte dienen. Der Begriff Test-Double ist angelehnt an das Stunt-Double in Filmen. Weitere Arten von Test-Doubles sind Stubs, Spies oder Fakes.

Mocks zeichnen während eines Testlaufs auf, wie die Software mit ihnen interagiert: Welche ihrer Methoden ruft die Anwendung in welcher Reihenfolge und mit welchen Argumenten auf? Anschließend verifiziert der Unit-Test, ob die beobachteten Interaktionen mit den erwarteten übereinstimmen. Auf diese Weise werden die Interaktionen zwischen den Objekten zu einem integralen Bestandteil der Implementierung und der Tests. Diese Art von Tests wird als Interaction-based bezeichnet.

Gleichzeitig isolieren Mocks das zu testende Objekt von seinen Abhängigkeiten. Während des Tests wird also nur der Code eines einzelnen Objekts ausgeführt, während alle Interaktionspartner durch Mocks ersetzt werden. Tests, die Objekte in Isolation testen, nennt man solitary.

Auch wenn Solitary Interaction-based Tests ihre Vorzüge haben und sich im Laufe der Zeit zum Standard entwickelt haben, sind sie nicht frei von Nachteilen. Dass Tests an die Interaktionen zwischen Objekten gekoppelt sind, erschwert Refaktorierungen. Diese sind jedoch ein unverzichtbares Werkzeug, um die Qualität der Codebasis dauerhaft aufrechtzuerhalten.

Refaktorierungen, die die Interaktionen zwischen Objekten verändern, können zu False Positives führen: Tests schlagen fehl, obwohl das Programm als Ganzes keine Fehler enthält. Lediglich die Objektinteraktionen weichen von den Erwartungen der Tests ab. Eine Suite aus Interaction-based Tests macht die Codebasis dadurch insgesamt weniger flexibel, da die Tests die Implementierungsdetails fixieren.

Zudem kann es vorkommen, dass Solitary Tests Fehler nicht erkennen, wenn zwar alle Objekte in Isolation erwartungsgemäß arbeiten, es aber im Zusammenspiel der Objekte zu unerwünschtem Verhalten kommt. Um dem vorzubeugen, sind neben den Unit Tests zusätzliche Integrationstests erforderlich, die gezielt das Zusammenspiel mehrerer Objekte testen.

Eine Alternative stellen Sociable, State-based Tests dar.

In Sociable Tests interagiert das zu testende Objekt nicht mit Test-Doubles, sondern mit den echten Abhängigkeiten, die auch im Produktivbetrieb existieren. Fehler, die durch die Interaktion zwischen den Objekten entstehen, fallen im Test sofort auf. Separate Integrationstests sind nicht erforderlich.

State-based Tests verifizieren das sichtbare Verhalten von Objekten und ignorieren die darunter liegenden Interaktionen. Diese Tests reagieren daher sehr viel robuster gegenüber Refactorings, da sie sich nur für das Endergebnis interessieren und nicht für die Implementierungsdetails.

Die echten Produktionsobjekte in den Tests zu verwenden, statt sie durch Mocks zu ersetzen, führt zunächst zu einem Problem: Der zu testende Code muss mit APIs, Datenbanken oder dem Dateisystem kommunizieren. Diese Nebenwirkungen (Side Effects) würden zu nicht deterministischen Tests führen, da sie vom globalen Zustand abhängig sind, unter anderem von Drittsystemen. So könnte etwa ein Test fehlschlagen, weil eine Fremd-API mit anderen Daten antwortet, als es der Test erwartet.

Ein weiteres Problem sind die Auswirkungen, die API-Aufrufe haben können. Dass jede Ausführung der Warenkorbtests eine Kreditkarte belastet, ist nicht wünschenswert. Darüber hinaus muss es möglich sein, zu testen, wie sich ein Programm verhält, wenn eine Dritt-API mit unterschiedlichen Formaten, mit Fehlern oder gar nicht antwortet. Und schließlich verlangsamt die API-Anbindung die Tests.

Integrationstests sind zwar für den Übergang des zu implementierenden Systems mit der Außenwelt notwendig, aber die Nebenwirkungen sind für die Tests innerhalb des Systems unerwünscht.



Source link

Weiterlesen

Entwicklung & Code

Mein Scrum ist kaputt #140: Shape Up statt Scrum – zur Produktentwicklung


ShapeUp ist ein willkommener Gegenentwurf zum klassischen Scrum und bringt frischen Wind in die agilen Diskussionen. Es ist ein Ansatz zur Produktentwicklung, den Basecamp, heute 37 Signals, entwickelt und den Ryan Singer im gleichnamigen Buch beschrieben hat.

Es versteht sich nicht als Framework wie Scrum, sondern als Set an Prinzipien und Praktiken, um fokussierter, selbstorganisierter und mit weniger Overhead zu arbeiten. Über dieses Thema sprechen Ina Einemann und Sebastian Bauer mit Klaus Breyer.

Empfohlener redaktioneller Inhalt

Mit Ihrer Zustimmung wird hier ein externer Inhalt geladen.


Agile Leadership Conference 2025

Agile Leadership Conference 2025

(Bild: Katsiaryna/stock.adobe.com)

Das Programm der zweitägigen Agile Leadership Conference 2025 steht fest: Der Leadership Day (27.11.25) behandelt das Führen von Teams und Organisationen, während sich der Self Leadership Day (3.12.25) mit Selbstführung und dem aktiven Selbst als Führungskraft beschäftigt.


(mdo)



Source link

Weiterlesen

Entwicklung & Code

software-architektur.tv: Webperformance mit Lucas Dohmen und Lisa Maria Schäfer


In dieser Folge des Videocasts software-architektur.tv sprechen Lucas Dohmen und Lisa Maria Schäfer über Webperformance. Sie klären, was sich dahinter verbirgt und warum das Thema wichtig ist – und zwar für alle, die Webseiten entwickeln. Des Weiteren stellen sie Tools zum Messen der Webperformance vor und geben Impulse, wie man seine Website schneller machen kann.

Lisa Maria Schäfer malt dieses Mal keine Sketchnotes, da sie vor der Kamera ist.

Die Ausstrahlung findet am Freitag, 5. September 2025, live von 13 bis 14 Uhr statt. Die Folge steht im Anschluss als Aufzeichnung bereit. Während des Livestreams können Interessierte Fragen via Twitch-Chat, YouTube-Chat, Bluesky, Mastodon, Slack-Workspace oder anonym über das Formular auf der Videocast-Seite einbringen.

software-architektur.tv ist ein Videocast von Eberhard Wolff, Blogger sowie Podcaster auf iX und bekannter Softwarearchitekt, der als Head of Architecture bei SWAGLab arbeitet. Seit Juni 2020 sind über 250 Folgen entstanden, die unterschiedliche Bereiche der Softwarearchitektur beleuchten – mal mit Gästen, mal Wolff solo. Seit mittlerweile mehr als zwei Jahren bindet iX (heise Developer) die über YouTube gestreamten Episoden im Online-Channel ein, sodass Zuschauer dem Videocast aus den Heise Medien heraus folgen können.

Weitere Informationen zur Folge finden sich auf der Videocast-Seite.


(mdo)



Source link

Weiterlesen

Beliebt