Künstliche Intelligenz
Über den Chat hinaus: Mit LLMs echte Nutzerprobleme lösen
Seit dem Erscheinen von ChatGPT ist das Chat-Fenster das zentrale User-Interface für die Interaktion mit künstlicher Intelligenz. Doch ist ein Chat tatsächlich die optimale Möglichkeit zur Interaktion – oder gibt es möglicherweise besser geeignete Wege, KI in Anwendungen zu integrieren?
Sascha Lehmann war mit seinem ersten PC schon klar, in welche Richtung die Reise geht. Durch Desktop- und Backend-Entwicklung im .NET-Umfeld fand er über die Jahre hinweg zu seiner wahren Leidenschaft, der Webentwicklung. Als Experte im Angular- und im UI/UX-Umfeld hilft er bei der Thinktecture AG in Karlsruhe tagtäglich Kunden bei ihren Herausforderungen und Vorhaben.
In den vergangenen Jahren haben KI-Werkzeuge die Welt im Sturm erobert. KI-Funktionen hielten Einzug in alltäglich genutzte Software – sei es in Entwicklungsumgebungen (IDEs), Office-Programmen oder sogar bei der Erstellung der Steuererklärung. Und fast überall kann man mit der Software chatten. Doch warum eigentlich?
Warum Chat als Interface so gut funktioniert
Die Stärken großer Sprachmodelle liegen insbesondere darin, unterschiedlichste Arten von Informationen zu verarbeiten und in natürlicher Sprache mit Nutzerinnen und Nutzern zu kommunizieren. Dafür benötigen sie Eingaben – ebenfalls in natürlicher Sprache. Was läge also näher, als per Texteingabe mit ihnen zu interagieren?
Auch aus Sicht der User-Experience (UX) bietet sich der Chat als Interface zunächst an. Nahezu jede und jeder kennt dieses mentale Modell – also die grundsätzliche Funktionsweise und das Erscheinungsbild eines Chatfensters – und kann es intuitiv nutzen, ohne vorherige Schulung. Gerade diese Niedrigschwelligkeit war einer der entscheidenden Faktoren für den durchschlagenden Erfolg von ChatGPT und vergleichbaren Anwendungen.
Mehrwert statt Selbstzweck: Was gute KI-Features ausmacht
Bei genauerer Betrachtung kann das Interaktionsmodell „Chat“ jedoch nicht ohne Weiteres ebenso erfolgreich auf andere Einsatzbereiche übertragen werden. So hilfreich es sein kann, beliebige Fragestellungen in einem offenen Chat mit einer KI zu diskutieren, umso schneller verliert dieses Modell seinen Reiz, sobald es in einem klar definierten Anwendungskontext zum Einsatz kommt. Der Rahmen ist dort meist deutlich enger gesteckt, was neue Herausforderungen aufwirft – beispielsweise:
- Wie kann ein Chat sinnvoll in den Anwendungskontext integriert werden?
- Welchen konkreten Mehrwert bietet die KI-Funktion gegenüber etablierten Arbeitsabläufen?
- Wie können fachspezifische Informationen kontextbezogen eingebunden werden?
Ohne gezielte Unterstützung – etwa Hinweise zu möglichen Interaktionen oder zum verfügbaren Domänenwissen und dessen Nutzung im Chat – fühlen sich viele Nutzerinnen und Nutzer schnell überfordert. Bleiben erste Interaktionen zudem erfolglos, führt das häufig zu Frustration – und das beworbene KI-Feature wird nur noch zögerlich oder gar nicht mehr verwendet. Es entsteht der Eindruck, die neue Technologie sei lediglich um ihrer selbst willen integriert worden.
Ein solches Nutzungserlebnis gilt es unbedingt zu vermeiden. KI-Funktionen – wie auch alle anderen Features – müssen einen klaren Mehrwert bieten. Sei es durch eine Erweiterung des Funktionsumfangs oder durch die Vereinfachung zuvor mühsamer Aufgaben.
UX-Patterns gegen kognitive Überforderung
Ein blanker Chat erzeugt – ähnlich wie die berüchtigte leere Seite beim Schreiben einer Hausarbeit – eine zu hohe kognitive Last, also eine Art Überforderungs- oder Lähmungszustand. Um dem entgegenzuwirken, können Vorschläge (Suggestions), hilfreich sein: kleine Container mit konkreten Prompt-Hinweisen.
„Vorschlagskarten“ (hier für Chat-GPT) helfen, die anfängliche Überforderung zu reduzieren und Interaktionshinweise zu geben.
(Bild: Shape of AI)
Diese Suggestions sind Teil einer Sammlung von UX-Patterns (Shape of AI) rund um den Einsatz von KI- und Chat-Integrationen. Da künstliche Intelligenz nach wie vor ein junges Themenfeld ist, werden in den kommenden Jahren zunehmend weitere dieser Gestaltungsmuster entstehen, auf die Entwicklerinnen und Entwickler bei der Konzeption und Entwicklung zurückgreifen können. Dennoch empfiehlt es sich, bereits heute solche Patterns zu nutzen, um Usern einen einfachen und intuitiven Einstieg zu ermöglichen.
Tu, was ich will – nicht, was ich sage
Die kognitive Last ist nicht die einzige Schwachstelle von Chat-basierten Interfaces. Bei längeren Konversationen kann es dazu kommen, dass das Kontextfenster – sozusagen das Kurzzeitgedächtnis des LLM, um Informationen der Konversation zu halten – des aktuell verwendeten Sprachmodells ausgeschöpft ist. In solchen Fällen müssen User auf einen neuen Chat ausweichen. Da LLMs jedoch über kein dauerhaftes Gedächtnis verfügen, ist es notwendig, bei diesem Wechsel eine Zusammenfassung des bisher Gesagten mitzugeben – nur so kann an vorherige Ergebnisse angeknüpft werden.
Zudem neigen LLMs in Konversationen gelegentlich zu Halluzinationen oder verlieren sich bei unpräzisen Eingaben in einem ineffizienten Hin und Her. Besonders problematisch wird das, wenn die Nutzerin oder der Nutzer bereits eine klare Vorstellung vom gewünschten Ergebnis hat. Die Herausforderung liegt darin, die eigene Intention so klar zu formulieren, dass das Modell sie korrekt interpretiert – ganz nach dem Motto: „Tu, was ich will – nicht, was ich sage.“
Formulare automatisch verstehen und ausfüllen
Gibt es also jenseits des klassischen Chat-Interfaces klügere Wege, Nutzerinnen und Nutzern KI-Funktionen zugänglich zu machen – möglichst in kleinen, leicht verdaulichen Einheiten, sodass Überforderung gar nicht erst entsteht?
Ein genauer Blick auf die Stärken großer Sprachmodelle zeigt Fähigkeiten, die im Alltag besonders hilfreich sein können:
- Verständnis und Verarbeitung natürlicher Sprache
- umfangreiches Weltwissen
- vielfältige Einsatzgebiete und enorme Anpassbarkeit
- Multimodalität – Verarbeitung von Text-, Audio- und Bilddaten (ohne Modellwechsel)
- Echtzeitsprachverarbeitung
- Erkennung und Analyse von Patterns
Immer wieder gibt es Anwendungsszenarien, in denen Daten aus Dokumenten, Bildern oder Videos zu extrahieren und in strukturierter Form weiterzuverarbeiten sind – etwa bei Formularen. Das Ausfüllen langer Formulare zählt in der Regel nicht zu den beliebtesten Aufgaben im Alltag.
Gerade hier besteht deutliches Potenzial zur Verbesserung der User-Experience. Doch wie könnte ein optimierter „Befüllungs-Workflow“ konkret aussehen?
Von Text zu JSON: Daten intelligent befüllen
Für die Arbeit mit Formularen stehen im Web und in etablierten Frameworks umfangreiche Schnittstellen (Application Programming Interfaces, APIs) zur Verfügung. Die zugrunde liegende Struktur eines Formulars wird dabei häufig in Form eines JSON-Objekts (JavaScript Object Notation) definiert.
Das Listing zeigt eine exemplarische Deklaration einer FormGroup
(inklusive Validatoren) innerhalb einer Angular-Anwendung.
personalData: this.fb.group({
firstName: ['', Validators.required],
lastName: ['', Validators.required],
street: ['', Validators.required],
zipCode: ['', Validators.required],
location: ['', Validators.required],
insuranceId: ['', Validators.required],
dateOfBirth: [null as Date | null, Validators.required],
telephone: ['', Validators.required],
email: ['', [Validators.required, Validators.email]],
licensePlate: ['', Validators.required],
}),
Dieses JSON-Objekt stellt den ersten Baustein des Workflows dar und definiert zugleich die Zielstruktur, in die das System die extrahierten Informationen überführt. Den zweiten Baustein bilden die Quelldaten in Form von Text, Bildern oder Audio. Zur vereinfachten Darstellung liegen sie im folgenden Szenario in Textform vor und sollen über die Zwischenablage in das System übertragen werden.
Bleibt noch ein dritter Aspekt: Entwicklerinnen und Entwickler müssen das Sprachmodell instruieren – sie müssen ihm eine präzise Aufgabenbeschreibung geben, um den gewünschten Verarbeitungsschritt korrekt durchzuführen. Diese Instruktion erfolgt im Hintergrund, vor dem User versteckt.
Versteckte Prompts: KI steuern ohne Chatfenster
Auch wenn Entwicklerinnen und Entwickler bewusst auf ein Chat-Interface verzichten, arbeiten Sprachmodelle weiterhin auf Basis von Instruktionen in natürlicher Sprache. Um Usern die Formulierungs- und Eingrenzungsarbeit abzunehmen, können diese Anweisungen vorab als sogenannte System-Messages oder System-Prompts im Programmcode hinterlegt werden.
Der Vorteil dieses Ansatzes liegt darin, dass die Befehle standardisiert und in konsistenter Qualität an das LLM übermittelt werden können. Zudem ist es möglich, diese Prompts mit Guards zu versehen – ergänzenden Anweisungen, die Halluzinationen vorbeugen oder potenziellem Missbrauch entgegenwirken sollen.
Nachfolgend eine exemplarische Darstellung eines System Prompt mit einer gezielten Aufgabe für das LLM:
Each response line must follow this format:
FIELD identifier^^^value
Provide a response consisting only of the following lines and values derived from USER_DATA:
${fieldString}END_RESPONSE
Do not explain how the values are determined.
For fields without corresponding information in USER_DATA, use the value NO_DATA.
For fields of type number, use only digits and an optional decimal separator.
In modernen Frontend-Applikationen ist es üblich, dass Schnittstellen ihre Antworten im JSON-Format liefern, da diese Datenstruktur leicht weiterverarbeitet werden kann.
Für möglichst präzise und verlässliche Ergebnisse kann die erwartete Zielstruktur mithilfe des JSON Mode definiert werden – in Form eines JSON-Schemas. Es beschreibt die Felder nicht nur strukturell, sondern auch mit genauen Typinformationen. Das erspart ausführliche textuelle Erläuterungen und erleichtert die Verarbeitung der Ergebnisse im Frontend.
Um Typsicherheit in der Anwendung sicherzustellen, kommt häufig Zod zum Einsatz – eine auf TypeScript ausgerichtete Validierungsbibliothek, mit der Datenstrukturen, von einfachen Strings bis hin zu komplexen geschachtelten Objekten, deklarativ definiert und zuverlässig geprüft werden können.
Das folgende Listing von OpenAI zeigt einen exemplarischen Aufruf der OpenAI-API, um Daten in einem bestimmten JSON Format zu extrahieren.
import OpenAI from "openai";
import { zodTextFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI();
// JSON-Schema-Definition mithilfe von Zod
const CalendarEvent = z.object({
name: z.string(),
date: z.string(),
participants: z.array(z.string()),
});
const response = await openai.responses.parse({
model: "gpt-4o-2024-08-06",
input: [
{ role: "system", content: "Extract the event information." },
{
role: "user",
content: "Alice and Bob are going to a science fair on Friday.",
},
],
text: {
format: zodTextFormat(CalendarEvent, "event"),
},
});
const event = response.output_parsed;
So kommunizieren Anwendungen mit dem LLM
Um System-Prompts und Quelldaten an ein LLM zu übermitteln, stehen je nach Anbieter verschiedene SDKs (Software Development Kits) zur Verfügung. Das obige Listing zeigt beispielsweise die Verwendung des OpenAI-SDK. Weitere Beispiele führender Anbieter sind Anthropic und Google. Sie bieten jeweils umfangreiche Funktionen, hohe Performance und eine benutzerfreundliche Developer-Experience, die den Einsatz der SDKs erleichtert.
Selbstverständlich ist die Nutzung von KI-Modellen nicht auf webbasierte Angebote großer Anbieter beschränkt. Wer mit kleineren Modellen für seine Aufgaben auskommt, kann ebenso lokal laufende Modelle verwenden oder auf im Browser integrierte Modelle wie WebLLM zurückgreifen.
Nach der erfolgreichen Implementierung und Abstraktion der SDK-Aufrufe genügt bereits ein Dreizeiler für das vollständige Parsing.
Es folgt eine exemplarische Darstellung des Ablaufs eines Extraktionsvorgangs anhand einer in Angular definierten FormGroup:
/* User Message – Datenquelle, aus der Daten zum Befüllen des Formulars extrahiert werden sollen. Diese werden in die Zwischenablage kopiert
Max Mustermann
77777 Musterstadt
Kfz-Kennzeichen: KA-SL-1234
Versicherungsnummer: VL-123456
*/
// Angular FormGroup zum Erfassen persönlicher Daten
personalData: this.fb.group({
firstName: ['', Validators.required],
lastName: ['', Validators.required],
street: ['', Validators.required],
zipCode: ['', Validators.required],
location: ['', Validators.required],
insuranceId: ['', Validators.required],
dateOfBirth: [null as Date | null, Validators.required],
telephone: ['', Validators.required],
email: ['', [Validators.required, Validators.email]],
licensePlate: ['', Validators.required],
}),
// JSON-Schema, das mit Zod anhand der FormGroup erstellt wurde
{
"firstName": {
"type": "string"
},
"lastName": {
"type": "string"
},
"street": {
"type": "string"
},
"zipCode": {
"type": "string"
},
"location": {
"type": "string"
},
"insuranceId": {
"type": "string"
},
"dateOfBirth": {
"type": "object"
},
"telephone": {
"type": "string"
},
"email": {
"type": "string"
},
"licensePlate": {
"type": "string"
}
}
// Antwort des LLM
[
{
"key": "firstName",
"value": "Max"
},
{
"key": "lastName",
"value": "Mustermann"
},
{
"key": "location",
"value": "Musterstadt"
},
{
"key": "zipCode",
"value": "77777"
},
{
"key": "licensePlate",
"value": "KA-SL-1234"
},
{
"key": "insuranceId",
"value": "VL-123456"
}
]
// Befüllen des Formulars mit den Ergebnissen (hier eine Angular FormGroup --> personalData)
try {
const text = await navigator.clipboard.readText();
const completions = await this.openAiBackend.getCompletions(fields, text);
completions.forEach(({ key, value }) => this.personalData.get(key)?.setValue(value));
} catch (err) {
console.error(err);
}
Aufwendige Ausfüllarbeiten gehören von nun an der Vergangenheit an und können dank geschickt eingesetzter KI-Unterstützung mühelos erledigt werden.
Dieses Beispiel zeigt einen ausgeführten Extraktionsvorgang: Zunächst wird der Text mit Informationen in die Zwischenablage kopiert, dann der Extraktionsvorgang gestartet, und schließlich stehen automatisch befüllte Formularfelder anhand der Textinformation bereit.
Darstellung des Ablaufs eines Extraktionsvorgangs aus Sicht der User (in drei Schritten, von oben nach unten).
Mehr Transparenz bei KI-generierten Inhalten
Diese Integration allein verbessert die UX enorm. Bei genauerer Betrachtung fallen aus UX-Designer-Sicht allerdings noch weitere Möglichkeiten auf:
Wie steht es etwa um die Nachvollziehbarkeit? Aktuell werden anhand des übermittelten Textes oder Bildes die Felder des Formulars automatisch befüllt. Zudem kann der Nutzer oder die Nutzerin das Formular nach Belieben selbst anpassen und editieren. Das mag in den meisten Fällen ausreichend und unproblematisch sein. Doch in bestimmten Kontexten reicht das allein nicht aus – beispielsweise bei rechtlich verbindlichen Themen wie Versicherungen oder Banking. Hier muss unter Umständen ersichtlich sein, welche Felder von einem Menschen und welche mithilfe von KI-Unterstützung befüllt wurden. Aus UX-Gründen ist es außerdem sinnvoll, Nutzern transparent zu vermitteln, wie einzelne Feldwerte zustande gekommen sind.
Nachvollziehbarkeit sichtbar machen
Ein Blick auf die großen Player zeigt: Wenn es um die Visualisierung von KI-generierten Inhalten geht, kommen oftmals Farbverläufe, Leucht- und Glitzereffekte zum Einsatz. Die folgenden Beispiele zeigen die visuelle Gestaltung von KI-Inhalten anhand der Designsprache von Apple und Google.
Beispiele für die Designsprachen von Apple (oben) und Google (unten) in Bezug auf deren AI-Produkte.
Warum also nicht dieses Pattern aufgreifen und für eigene Integrationen nutzen? Die großen Anbieter verfügen über UI/UX-Research-Budgets, von denen kleinere Unternehmen nur träumen können. Es liegt nahe, sich hier inspirieren zu lassen, zumal die hohe Reichweite bereits neue visuelle Standards prägt – Nutzer sind mit derartigen Darstellungen zunehmend vertraut.
Eine exemplarische Umsetzung im gezeigten Formularszenario könnte darin bestehen, automatisch befüllte Felder mit einem leuchtenden Rahmen (Glow-Effekt) zu versehen. Diese einfache Maßnahme schafft eine klare visuelle Unterscheidbarkeit – und verbessert gleichzeitig die User-Experience.
Automatisch befüllte Felder sind durch einen leuchtenden Rahmen (Glow-Effekt) hervorgehoben.
Um die Nachvollziehbarkeit weiter zu verbessern, können Entwickler eine History-Funktion einbauen: Sie zeigt, welche automatischen Extraktionen wann passiert sind – inklusive der genutzten Quellen (Texte, Sprache oder Bilder). So haben User jederzeit den Überblick und können bei Bedarf einfach per Undo/Redo zu einem früheren Zustand zurückspringen.
Künstliche Intelligenz
Großbritannien: Apple argumentiert gegen Regulierung mit EU als Negativbeispiel
Apple hat die britische Wettbewerbsbehörde Competition and Markets Authority (CMA) davor gewarnt, Regeln wie in der Europäischen Union aufzustellen, wenn es um die Regulierung des App Store geht, die auch in Großbritannien ansteht. „EU-style rules“ seien „schlecht für Nutzer und schlecht für Entwickler“, so der Konzern zu den aktuellen CMA-Vorschlägen. Solche Regeln hätten in Europa dazu geführt, dass Apple Funktionen und Verbesserungen für Nutzer habe verzögern müssen. Die CMA findet, dass der Markt für Apps derzeit zu stark von Google und Apple mit Play Store und App Store dominiert wird. Die Behörde wies die Darstellung gegenüber der BBC zurück. Sie meinte, ihre neuen Regeln seien „anders als die der EU“ und seien dafür gedacht, Unternehmen zu helfen, Innovationen auf den Markt zu bringen und zu wachsen.
EU-Absetzversuche
Pikant daran: Großbritannien versucht auch noch unter der aktuellen Labour-Regierung, sich nach dem Brexit von der EU-Politik zu unterscheiden – auch wenn es wieder stärker zu einer Annäherung zwischen den Briten und dem Kontinent gekommen ist. Dass Apple mit der EU als Negativbeispiel argumentiert, ist also beachtenswert. Die CMA sieht aber keinen Grund, im App-Markt nicht einzugreifen, wie dies in immer mehr Ländern auf der ganzen Welt geschieht – von den USA über Japan bis Australien.
Die CMA hatte zuletzt festgestellt, dass zwischen 90 und 100 Prozent der britischen Mobilgeräte mit Android oder iOS liefen. Beide Firmen hätten damit „effektiv ein Duopol“. Apple und Google sollen unter anderem nicht mehr verbieten dürfen, dass App-Anbieter Nutzer alternative Bezahlmethoden anbieten. Mit einer endgültigen Entscheidung ist im Oktober zu rechnen. Apple argumentierte weiter, die CMA-Regulierung könne dazu führen, dass Schutzmaßnahmen für Sicherheit und Datenschutz der Nutzer untergraben würden. Innovationen würden beschränkt und der Konzern gezwungen, „unsere Technik kostenlos an ausländische Wettbewerber“ zu geben.
Maßnahmen „speziell für Großbritannien“
Die CMA wiederhole Fehler der EU, die diese bei der Umsetzung des Digital Markets Act (DMA) gemacht habe. Die CMA betonte, die britischen Wettbewerbsregeln arbeiteten „gänzlich anders“ als in der EU. In einem Statement, das der BBC vorliegt, hieß es, es ginge darum, britischen Firmen zu helfen – „inklusive unserer erfolgreichen App-Developer-Wirtschaft“. Gleichzeitig sollten britische Konsumenten weiter von Innovationen profitieren, die in anderen Ländern eingeführt wurden.
Auch führe mehr Wettbewerb auf mobilen Plattformen nicht zu weniger Privatsphäre und Sicherheit. Man untersuche Maßnahmen speziell für Großbritannien sehr genau. Epic Games, Apples großer Gegner in einem Rechtsstreit in den USA um den App Store, hatte die CMA zuletzt kritisiert. Die Regulierung gehe nicht weit genug, weshalb man mit „Fortnite“ nicht zurück auf britische iPhones wolle, hieß es.
(bsc)
Künstliche Intelligenz
SSD im Mac mini M4 aufrüsten: Die Schritt-für-Schritt-Anleitung
In einem eigenen heise+-Beitrag haben wir erklärt, warum es sinnvoll und einfach sein kann, einen Mac mini M4 oder M4 Pro selbst mit SSD-Modulen aufzurüsten, statt Apples Mondpreise zu bezahlen. In diesem Artikel geht es nun darum, wie Sie den Ein- beziehungsweise Umbau praktisch selbst vornehmen können.
Dabei ist glücklicherweise nur relativ wenig Bastelgeschick gefragt. Allerdings sind später weitere Schritte notwendig, Ihren kleinen Mac wieder lauffähig zu machen. Und auch vorher gibt es einiges zu beachten.
Zeit: 30 – 60 Minuten für den Umbau, Zeit für das Backup und die Wiederherstellung
- einen zweiten Mac mit T2-Sicherheitschip oder Apple-Silicon
- Thunderbolt- oder USB-C-Kabel
- externe SSD oder Festplatte für ein Backup
- Time Machine oder Backup-Programm wie Carbon Copy Cloner
- SSD-Modul passend für den Mac mini M4 oder M4 Pro
Werkzeug:
- Schraubendreher (T3, T5, T8)
- Plastikstift (Spudger)
- Plektren oder alte EC-Karten
- ESD-Pinzette
- Magnetunterlage, Schälchen oder Eiswürfelbehälter für Schrauben
- optional: Druckluft
Backup mit Time Machine erstellen
Bevor Sie den Mac mini auseinandernehmen, sollten Sie Ihre Daten sichern. Am bequemsten geht dies mit dem Bordmittel Time Machine: Schließen Sie eine leere externe Festplatte oder SSD an Ihren Mac an, fragt macOS, ob es die Festplatte für Time Machine verwenden darf. Stimmen Sie diesem zu, beginnt wenige Minuten später automatisch das Backup. Das kann je nach Speichermedium und Datenmenge ein paar Stunden in Anspruch nehmen.
Das war die Leseprobe unseres heise-Plus-Artikels „SSD im Mac mini M4 aufrüsten: Die Schritt-für-Schritt-Anleitung“.
Mit einem heise-Plus-Abo können Sie den ganzen Artikel lesen.
Künstliche Intelligenz
Ethical Hacking für Fortgeschrittene – sich selbst hacken, bevor es andere tun
Mithilfe von Ethical Hacking nutzen Admins und IT-Sicherheitsverantwortliche die Techniken und Tools potenzieller Angreifer, um besser gegen diese gewappnet zu sein. Unser neuer Classroom Fortgeschrittenes Ethical Hacking – Deep Dive ins Pentesting für Admins gibt Ihnen ein noch tiefergehendes Wissen zur Abwehr an die Hand. Lernen Sie in fünf Sessions „richtig zu hacken“, um potenziellen Angriffen frühzeitig zu begegnen, indem Sie eigene Systeme auf Herz und Nieren prüfen.
Unser Experte Frank Ully widmet sich im Rahmen des Classrooms allen relevanten Bereichen, über die potenzielle Angreifer Zugriff auf Ihre Systeme erhalten können: Das betrifft sowohl externe Umgebungen und die eigene öffentliche IT-Infrastruktur als auch interne Netzwerke mit Fokus auf Active Directory (AD). Aber auch Webanwendungen und Web-Schnittstellen (APIs) stellen potenzielle Einfallstore dar, die Sie aus der Angreiferperspektive kennenlernen. Abschließend stehen auch die öffentlichen Clouds im Fokus, mit Schwerpunkt auf der Microsoft-Cloud (Entra ID, Microsoft 365) sowie Amazon Web Services (AWS).
Praxisbeispiele zum Angriff auf die eigenen Systeme
Für zahlreiche Bereiche zeigt unser Experte, in welcher absichtlich verwundbaren Umgebung Sie kostenfrei oder preiswert hacken und sich weiterbilden können – auch weit über diesen Classroom hinaus. Sie lernen das Ausnutzen von Schwachstellen, Erlangen weiterer Privilegien und Erreichen eines Ziels, etwa Ransomware im gesamten Netzwerk auszurollen.
Mit diesem Wissen sind Admins in der Lage, Angriffe frühzeitig zu erkennen und bereits im Vorhinein zu erschweren. Sie kennen und beherrschen die Tools der Hacker und können dieses Wissen gegen potenzielle Angreifer anwenden. Die Termine sind:
- 10.11.25: Fortgeschrittenes Pentesting und OSINT für proaktive IT-Sicherheit
- 17.11.25: Metasploit unter Kali Linux – Command-and-Control- und andere Angriffs-Frameworks für Linux und Windows
- 24.11.25: Windows-Netzwerke angreifen – Dienste im Active Directory und Linux-Systeme proaktiv schützen
- 01.12.25: Schwachstellen in Webanwendungen und Web-APIs nutzen – fortgeschrittene Techniken
- 08.12.25: Unsichere Standardeinstellungen und Fehlkonfigurationen in der Microsoft-Cloud ausnutzen – und AWS weiter härten
Praxis- und Expertenwissen – live und für später
Die Sessions haben eine Laufzeit von jeweils vier Stunden und finden von 9 bis 13 Uhr statt. Alle Teilnehmenden können sich nicht nur auf viel Praxis und Interaktion freuen, sondern haben auch die Möglichkeit, das Gelernte mit allen Aufzeichnungen und Materialien im Nachgang zu wiederholen und zu vertiefen. Fragen werden direkt im Live-Chat beantwortet und Teilnehmer können sich ebenfalls untereinander zum Thema austauschen. Der nachträgliche Zugang zu den Videos und Übungsmaterialien ist inklusive.
Unser Experte für Cybersicherheit und Pentesting, Frank Ully, ist bereits bestens aus unserem Classroom „Ethical Hacking für Admins – Pentesting für eine sichere IT“ bekannt. Thematisch baut unser neuer Classroom auf diesem auf, eine vorherige Teilnahme wird aber nicht vorausgesetzt, sofern Sie bereits Erfahrungen mit Pentesting und Ethical Hacking besitzen. Weitere Informationen und Tickets finden Interessierte auf der Website des Classrooms.
E-Mail-Adresse
Ausführliche Informationen zum Versandverfahren und zu Ihren Widerrufsmöglichkeiten erhalten Sie in unserer Datenschutzerklärung.
(cbo)
-
Datenschutz & Sicherheitvor 3 Monaten
Geschichten aus dem DSC-Beirat: Einreisebeschränkungen und Zugriffsschranken
-
UX/UI & Webdesignvor 2 Wochen
Der ultimative Guide für eine unvergessliche Customer Experience
-
Apps & Mobile Entwicklungvor 3 Monaten
Metal Gear Solid Δ: Snake Eater: Ein Multiplayer-Modus für Fans von Versteckenspielen
-
Online Marketing & SEOvor 3 Monaten
TikTok trackt CO₂ von Ads – und Mitarbeitende intern mit Ratings
-
Social Mediavor 2 Wochen
Relatable, relevant, viral? Wer heute auf Social Media zum Vorbild wird – und warum das für Marken (k)eine gute Nachricht ist
-
Entwicklung & Codevor 2 Wochen
Posit stellt Positron vor: Neue IDE für Data Science mit Python und R
-
Digital Business & Startupsvor 2 Monaten
10.000 Euro Tickets? Kann man machen – aber nur mit diesem Trick
-
UX/UI & Webdesignvor 1 Tag
Adobe Firefly Boards › PAGE online