Connect with us

Entwicklung & Code

Was ITler im Monat verdienen


close notice

This article is also available in
English.

It was translated with technical assistance and editorially reviewed before publication.

Vollzeitbeschäftigte in IT-Berufen haben 2024 im Median einen monatlichen Bruttolohn von 5907 Euro erhalten, wie aus Zahlen der Bundesagentur für Arbeit (BA) hervorgeht. Im Vergleich zum ITler-Medianlohn von 2023 (5.688 Euro) stieg der Wert um rund 3,85 Prozent, was die offizielle Inflationsrate von 2,2 Prozent im Jahr 2024 übertrumpft. Median ist der in der Mitte liegende Wert einer Zahlenreihe; das heißt, es gibt gleich viele Gehälter, die niedriger und die höher als das Mediangehalt liegen.

Das Medianentgelt aller sozialversicherungspflichtig Vollzeitbeschäftigten stieg 2024 rein prozentual gesehen mit 5,7 Prozent deutlich stärker, was sich laut BA vor allem durch höhere Tarifabschlüsse begründet. Allerdings liegt der hier von der BA ermittelte allgemeine Wert mit 4.013 Euro auch klar unter den IT-Gehältern. Und in absoluten Zahlen haben die ITler leicht die Nase vorn: Ihr Zuwachs liegt bei 219 Euro, der Zuwachs aller Berufsgruppen bei 218 Euro.

Und auch bei den ITlern gibt es laut aktualisiertem Entgeltatlas der BA nach erhebliche Spreizungen je nach Bereich und Qualifikation. Fachinformatiker für die Anwendungsentwicklung bringen im Median 4.449 Euro brutto im Monat nach Hause, IT-System-Elektroniker 4.350 Euro. Darüber liegen etwa Web-Developer mit 4.826 Euro, IT-Administratoren mit 5.331 Euro, ERP-Berater (5.712 Euro) und Software-Entwickler (6.097 Euro). Deutlich mehr ist auch noch als IT-Sicherheitskoordinator (6.517 Euro) oder Backend-Entwickler (6.528 Euro) zu holen. Ebenfalls spielt das Geschlecht eine Rolle – je nach Job schneiden Frauen in der IT um knapp etwas über hundert Euro bis hin zu rund 700 Euro schlechter ab.

Über alle Berufsgruppen in Deutschland hinweg betrachtet, kommt die BA für Menschen ohne Berufsabschluss auf einen Verdienst von 2.987 Euro brutto, bei Angestellten mit anerkanntem Berufsabschluss sind es 3.870 Euro. Der allgemeine Median für Akademikerinnen und Akademiker liegt bei 5.916 Euro.

Wie oft bei solchen Gehaltsübersichten finden sich auch deutliche regionale Unterschiede. Während in Baden-Württemberg, Bayern, Hamburg und Hessen in der Regel die höchsten IT-Gehälter gezahlt werden, liegen die ostdeutschen Bundesländer meist deutlich hinten. Ein Systemadministrator würde laut BA etwa in Baden-Württemberg auf im Median auf 5.713 Euro monatlich kommen, in Sachsen hingegen nur auf 4.474 Euro. Mit Wohnort in Stuttgart wären es dann 6.223 Euro, in Dresden lediglich 4.483 Euro.

Die Daten basieren laut der BA auf der Meldung der Arbeitgeber zur Sozialversicherung. Dabei ist zu beachten, dass in der Kalkulation der Behörde nur Löhne und Gehälter bis zur Beitragsbemessungsgrenze für die Rentenversicherung einfließen. Die lag im vergangenen Jahr bei 7.550 Euro in Westdeutschland und 7.450 Euro in Ostdeutschland. Bei Berufen mit sehr guten Verdienstmöglichkeiten könnten die Median-Werte also noch höher ausfallen.

Lesen Sie auch


(axk)



Source link

Entwicklung & Code

Bestie statt for-Schleife: KI entwickelt Programmiersprache im Gen-Z-Slang


Damn, das ist cringe: Der Australier Geoffrey Huntley hat die Programmier-KI Claude Code von Anthropic drei Monate in Dauerschleife laufen lassen, um eine eigene Programmiersprache im Stile der verbreiteten Umgangssprache der Generation Z zu entwerfen. Und warum? Nun, weil er es kann, wie er in einem Blogpost darlegt.


WTF

WTF

Das Internet ist voll von heißen IT-News und abgestandenem Pr0n. Dazwischen finden sich auch immer wieder Perlen, die zu schade sind für /dev/null.

Tatsächlich habe ihn einfach die Möglichkeit gereizt, dass mithilfe generativer KI der Traum vom eigenen Compiler Gestalt annehmen kann, schreibt er. Das Ganze sei dann auch ein Lernexperiment gewesen. Der KI sei es dabei selbst überlassen worden, die Sprache jeweils weiter zu verbessern. Das Ergebnis hat er sogar auf einer eigenen Website zum Download bereitgestellt. Der Name der Programmiersprache: Cursed (auf deutsch: verflucht).

Der Compiler verfügt über zwei Modi. Er kann als Interpreter oder als Compiler eingesetzt werden und Binärdateien für macOS, Linux und Windows erstellen. Zudem gebe es halbfertige Erweiterungen für die Editoren VSCode, Emacs und Vim. Wer sich den Entstehungsprozess anschauen möchte, findet dazu entsprechende Videos bei YouTube.

Sprachlich darf man sich das so vorstellen, dass an die Stelle von bekannten Begriffen wie for oder case Wörter treten, die in der GenZ gerne benutzt werden, wie etwa bestie oder mood. Eine Roadmap zur Weiterentwicklung gebe es nicht, darüber soll die Community entscheiden.

Der ursprüngliche Prompt lautete: „Hey, kannst du mir eine Programmiersprache wie Golang erstellen, bei der jedoch alle lexikalischen Schlüsselwörter ausgetauscht sind, sodass sie dem Slang der Generation Z entsprechen?“

Wer dem Beispiel von Huntley folgen möchte, sollte allerdings das nötige Kleingeld bereithalten. Der eigene Compiler koste einen etwa 5000 US-Dollar, schreibt er in einem Post auf X. Tatsächlich habe er mit 14.000 US-Dollar fast das Dreifache investieren müssen, da Cursed zunächst in C, dann in Rust und jetzt in Zig entwickelt wurde. Aber so gebe es jetzt eben auch drei Editionen des Compilers. Und am Ende sei das nur ein Vierzehntel des Gehalts eines Entwicklers in San Francisco, scherzt er.


(mki)



Source link

Weiterlesen

Entwicklung & Code

MCP Registry gestartet: Katalog für MCP-Server


close notice

This article is also available in
English.

It was translated with technical assistance and editorially reviewed before publication.

Das Entwicklungsteam hinter dem Model Context Protocol (MCP) hat die MCP Registry als Preview eingeführt – einen offenen Katalog und eine API, um öffentlich verfügbare MCP-Server ausfindig zu machen und zu verwenden. Bei MCP handelt es sich um ein offenes Protokoll für den Zugriff von Large Language Models (LLMs) auf externe Datenquellen.

Bereits vor einigen Monaten teilte das MCP-Team auf GitHub mit, an einem zentralen Register für das MCP-Ökosystem zu arbeiten. Die nun veröffentlichte, quelloffene MCP Registry soll das Verfahren standardisieren, wie MCP-Server verteilt und entdeckt werden. Sie bietet Server-Maintainern die Möglichkeit, ihre Server hinzuzufügen, und Client-Maintainern, auf Serverdaten zuzugreifen.

Um der Registry einen Server hinzuzufügen, muss dieser auf einer Package Registry wie npm, PyPI oder DockerHub veröffentlicht sein. Eine detaillierte Anleitung findet sich auf GitHub. Dort erfahren Developer, wie sie eine server.json-Datei für ihren Server erstellen, Authentifizierung mit der Registry erreichen, ihren Server veröffentlichen und die Veröffentlichung verifizieren können.

Wie das MCP-Team betont, soll das zentrale Register als hauptsächliche Source of Truth für öffentlich verfügbare MCP-Server dienen, jedoch den bereits bestehenden Registries von Community und Unternehmen nicht im Weg stehen. Diese können in der MCP Registry öffentliche oder private Sub-Registries anlegen, wie das MCP-Team auf GitHub beschreibt.

Bereits existierende Sammlungen sind etwa eine lange, gepflegte Liste auf GitHub und ein Docker-Verzeichnis für MCP-Quellen.

Da es sich bei der MCP Registry derzeit um eine Preview handelt, gibt es keine Garantie für die Beständigkeit der darin enthaltenen Daten. Auch sind Breaking Changes möglich, bevor die Registry die allgemeine Verfügbarkeit erreicht.

Weitere Informationen sind auf dem MCP-Blog zu finden.


(mai)



Source link

Weiterlesen

Entwicklung & Code

KI-Überblick 4: Deep Learning – warum Tiefe den Unterschied macht


Die bisherigen Beiträge dieser Serie haben gezeigt, dass neuronale Netze aus einfachen Bausteinen bestehen. Erst die Kombination vieler dieser Bausteine in mehreren Schichten ermöglicht jedoch die Durchbrüche, die moderne KI-Systeme prägen. Genau hier setzt das Konzept „Deep Learning“ an: Es beschreibt maschinelles Lernen mit tiefen, also mehrschichtigen, neuronalen Netzen.


the next big thing – Golo Roden

the next big thing – Golo Roden

Golo Roden ist Gründer und CTO von the native web GmbH. Er beschäftigt sich mit der Konzeption und Entwicklung von Web- und Cloud-Anwendungen sowie -APIs, mit einem Schwerpunkt auf Event-getriebenen und Service-basierten verteilten Architekturen. Sein Leitsatz lautet, dass Softwareentwicklung kein Selbstzweck ist, sondern immer einer zugrundeliegenden Fachlichkeit folgen muss.

Deser Beitrag klärt, was „tief“ im Kontext neuronaler Netze bedeutet, warum zusätzliche Schichten die Leistungsfähigkeit erhöhen und welche typischen Architekturen in der Praxis verwendet werden.

Von Deep Learning spricht man, wenn ein neuronales Netz mehrere verborgene Schichten enthält – in der Regel deutlich mehr als zwei oder drei. Jede Schicht abstrahiert die Ausgaben der vorherigen Schicht und ermöglicht so, komplexe Funktionen zu modellieren. Während einfache Netze vor allem lineare und leicht nichtlineare Zusammenhänge erfassen, können tiefe Netze hochdimensionale Strukturen und Muster erkennen.

Die Entwicklung hin zu tieferen Netzen wurde erst durch drei Faktoren möglich:

  1. Stärkere Rechenleistung – insbesondere durch Grafikkarten (GPUs) und später spezialisierte Hardware wie TPUs.
  2. Größere Datenmengen, die zum Training genutzt werden können.
  3. Verbesserte Trainingsverfahren, darunter die Initialisierung von Gewichten, Regularisierungstechniken und optimierte Aktivierungsfunktionen.

Ein Kernprinzip des Deep Learning ist die hierarchische Merkmalsextraktion. Jede Schicht eines tiefen Netzes lernt, auf einer höheren Abstraktionsebene zu arbeiten:

  • Frühe Schichten erkennen einfache Strukturen, zum Beispiel Kanten in einem Bild.
  • Mittlere Schichten kombinieren diese zu komplexeren Mustern, etwa Ecken oder Kurven.
  • Späte Schichten identifizieren daraus ganze Objekte wie Gesichter, Autos oder Schriftzeichen.

Diese Hierarchiebildung entsteht automatisch aus den Trainingsdaten und macht Deep Learning besonders mächtig: Systeme können relevante Merkmale selbst entdecken, ohne dass Menschen sie mühsam vordefinieren müssen.

Im Deep Learning haben sich verschiedene Architekturen etabliert, die für bestimmte Datenarten optimiert sind.

Convolutional Neural Networks (CNNs) sind spezialisiert auf Bild- und Videodaten. Sie verwenden Faltungsschichten („Convolutional Layers“), die lokale Bildbereiche analysieren und so translationinvariante Merkmale lernen. Ein CNN erkennt beispielsweise, dass ein Auge im Bild ein Auge bleibt, egal wo es sich befindet. CNNs sind der Standard in der Bildklassifikation und Objekterkennung.

Recurrent Neural Networks (RNNs) wurden entwickelt, um Sequenzen wie Text, Sprache oder Zeitreihen zu verarbeiten. Sie besitzen Rückkopplungen, durch die Informationen aus früheren Schritten in spätere einfließen. Damit können sie Zusammenhänge über mehrere Zeitschritte hinweg modellieren. Varianten wie LSTMs (Long Short-Term Memory) und GRUs (Gated Recurrent Units) beheben typische Probleme wie das Vergessen relevanter Informationen.

Autoencoder sind Netze, die Eingaben komprimieren und anschließend wieder rekonstruieren. Sie lernen dabei implizit eine verdichtete Repräsentation der Daten und werden etwa für Anomalieerkennung oder zur Vorverarbeitung genutzt. Erweiterte Varianten wie Variational Autoencoders (VAE) erlauben auch generative Anwendungen.

Diese Architekturen bilden die Grundlage vieler moderner KI-Anwendungen. Sie sind jedoch noch nicht der Endpunkt: In den letzten Jahren haben Transformer klassische RNNs in vielen Bereichen abgelöst, insbesondere in der Sprachverarbeitung. Darum wird es in einer späteren Folge dieser Serie gehen.

Tiefe Netze sind leistungsfähig, bringen aber neue Herausforderungen mit sich:

  • Großer Datenhunger: Ohne ausreichend Trainingsdaten tendieren tiefe Modelle zum Überfitting.
  • Rechenintensiv: Training und Inferenz erfordern spezialisierte Hardware und hohe Energieaufwände.
  • Schwer erklärbar: Mit wachsender Tiefe nimmt die Nachvollziehbarkeit weiter ab, was für viele Anwendungsbereiche problematisch ist.

Trotzdem hat sich Deep Learning als Schlüsseltechnologie für die meisten aktuellen KI-Durchbrüche etabliert.

Die nächste Folge widmet sich den Transformern – der Architektur, die Large Language Models und viele andere moderne Systeme ermöglicht. Sie erläutert, warum klassische RNNs an ihre Grenzen stießen und wie Self-Attention die Verarbeitung von Sprache revolutionierte.


(rme)



Source link

Weiterlesen

Beliebt