Künstliche Intelligenz

Alibabas LLM Qwen3 auf dem nächsten Level


Mit verhältnismäßig geringem Echo ist am 10.9.2025 ein neues Qwen3-Modell erschienen. Die Randdaten klingen unspektakulär: Es hat 80 Milliarden Parameter, von denen jeweils immer drei Milliarden aktiv sind. Doch die Änderungen haben es in sich und könnten eine mögliche Richtung vorgeben, in die sich Sprachmodelle weiterentwickeln.




ist Data Scientist und Machine Learning Architect. Er promovierte in theoretischer Physik und arbeitet seit 20 Jahren im Bereich großer Datenmengen und Künstliche Intelligenz, insbesondere mit Fokus auf skalierbaren Systemen und intelligenten Algorithmen zur Massentextverarbeitung. Seit 2022 ist er Professor an der TH Nürnberg und konzentriert seine Forschung auf die Optimierung von User Experience mithilfe moderner Verfahren. Er ist Gründer der datanizing GmbH, Referent auf Konferenzen und Autor von Artikeln zu Machine Learning und Text Analytics.

Das Qwen-Team identifiziert die Gesamtzahl der Parameter und die Kontextlänge als größte Engpässe sowohl im Training als auch in der Inferenz. Im Vergleich zu den schon länger verfügbaren Qwen3-Modellen gibt es beim neuen Modell vor allem folgende Innovationen:

  • Hybrider Attention-Mechanismus
  • Schlanke Mixture-of-Experts-Struktur
  • Trainingsoptimierungen
  • Vorhersage mehrerer Token




(Bild: Golden Sikorka/Shutterstock)

Die Online-Konferenz LLMs im Unternehmen am 29. Oktober zeigt, wie man das passende Modell auswählt, die Infrastruktur aufbaut und die Sicherheit im Griff behält. Außerdem gibt der Thementag von iX und dpunkt.verlag einen Ausblick auf Liquid Foundation Models als nächste Generation von LLMs.

Hybrider Attention-Mechanismus: Das neue Modell wendet in 75 Prozent der Layer eine Form der sogenannten linearen Attention (Gated DeltaNet) an, die wesentlich weniger Speicher und Rechenzeit benötigt. Die übrigen Layer arbeiten nach dem Standard-Attention-Mechanismus. Im Blog kann man nachlesen, dass diese hybride Architektur bessere Ergebnisse erzielt, als in allen Layern den gleichen Attention-Mechanismus zu verwenden. Diese Änderung führt dazu, dass man das Modell nicht mehr als reine Transformer-Architektur bezeichnen kann.

Schlanke Mixture-of-Experts-Struktur: Mixture-of-Experts-Modelle (MoE) verwenden immer nur einen Teil der Parameter und können damit Token schneller vorhersagen. MoE-Modelle gibt es schon einige Jahre, und Innovationen setzte vor allem DeepSeek mit seiner V3-Architektur um. Sie bietet deutlich mehr Experten: 256 statt der üblichen acht, jedoch sind immer nur acht gleichzeitig aktiv. Von den 671 Milliarden Parametern sind damit bei jeder Vorhersage nur 37 Milliarden erforderlich. Qwen3-Next geht hier noch weiter und arbeitet bei „lediglich“ 80 Milliarden Parametern mit ganzen 512 Experten, von denen immer zehn befragt werden. So benötigt jede Vorhersage nur drei Milliarden Parameter.

Trainingsoptimierungen: Das Training großer Sprachmodelle ist enorm aufwendig und dauert Hunderte GPU-Jahre. Daher legen Data Scientists großes Augenmerk darauf, diesen Prozess möglichst gut zu optimieren. Während etwa Moonshot.ai den Muon-Optimizer verwendet, nutzt das Schweizer Apertus-Modell Goldfish Loss, um das Training effizienter zu gestalten. Qwen3-Next hat dafür gleich mehrere, andere Optimierungen parat. Zunächst hilft auch hier der hybride Attention-Mechanismus, aber die Entwickler nutzen darüber hinaus eine nullzentrierte RMS-Norm (Root Mean Square) für die Layer-Gewichte, weil die bisher verwendete QK-Norm (Query-Key) explodierte. Zusätzlich implementieren sie ein nicht näher definiertes Verfahren, das alle MoE-Experten unvoreingenommen mit Trainingsdaten versorgt. Möglicherweise kommt hier das von DeepSeek veröffentlichte Verfahren Auxiliary-Loss-Free zum Einsatz, aber die Qwen-Autoren schweigen sich zu Details aus.

Vorhersage mehrerer Token: Mit der Mehrfachvorhersage haben schon einige Modelle experimentiert, bisher aber vor allem als Optimierung im Trainingsprozess. Auch hier geht Qwen3-Next einen Schritt weiter und lässt die Vorhersage im Inferenzmodus zu. Da die vorhergesagten Token nicht immer richtig sind, heißt das Verfahren auch Speculative Decoding. Was bisher nur mit Tricks und der Kombination kleiner und großer Modelle möglich war, bietet Qwen3-Next direkt.

Das Qwen-Team behauptet, dass es das Modell durch diese Optimierungen mit lediglich 80 Prozent des Aufwands für das deutlich kleinere Qwen3-30B-A3B trainieren konnte. Im Vergleich zum dichten Qwen3-32B bedeutet das demnach weniger als zehn Prozent des Aufwands. Die Optimierungen helfen auch in der Inferenzphase: Besonders bei langen Kontexten ist das Modell deutlich schneller als vergleichbar große Modelle.

Das neue Modell auszuprobieren, ist nicht so einfach, denn die stark veränderte Architektur führt zu Problemen mit dem beliebten Tool llama.cpp, das wohl bis auf Weiteres nicht damit zusammenarbeitet. Besser sieht es mit der Transformers-Bibliothek aus, und auch vLLM arbeitet mit Qwen3-Next und überraschenderweise auch für das von Apple bereitgestellte MLX-Framework.

Die Ausführung funktioniert am zuverlässigsten mit Quantisierung, also reduzierter Genauigkeit zugunsten des Speicherbedarfs, weil die Modelle sonst mehr als 160 GByte RAM benötigen. Auf runpod.io kann man sich beispielsweise eine RTX 6000 Pro mit 96 GByte VRAM für knapp zwei Euro pro Stunde mieten und zumindest mit dem AWQ-Modell (Activation-aware Weight Quantization for LLM Compression and Acceleration) herumspielen. Gleiches gilt für Apple-Hardware, auf der es mindestens 64 GByte RAM sein sollten. Alternativ kann man OpenRouter nutzen, wo das Modell bei unterschiedlichen Providern zur Verfügung steht.



Qwen3-Next-Thinking kennt den Heise Verlag gut, auch wenn es keine Zeitschrift mit dem Titel Security Intelligence gibt und 1949 auch noch keine Elektrotechnik-Zeitschriften im Programm waren.

Die Antwort von Qwen3-Next-Instruct ist ähnlich. Das Reasoning bringt dabei also kaum Verbesserungen. Insgesamt ist das Instruct-Modell auf lmarena.ai und livebench.ai etwas besser bewertet. Die deutsche Variante der Strawberry-Challenge mit der Frage nach der Anzahl der „e“ in Erdbeere kann das Instruct-Modell nach anfänglich falschem Raten richtig beantworten:



Das Modell korrigiert sich, kommt aber auf das richtige Ergebnis bei der deutschen Strawberry-Challenge.

Qwen3-Next ist bei politischen Fragen äußerst restriktiv. Nur mit Mühe kann man ihm (vor allem in quantisierten Modellen) etwas dazu entlocken. Bei der Ausgabe ist der wiederholte Hinweis spannend, dass das Modell zu dem Thema nichts sagen darf. Das sieht fast danach aus, als ob sich das Modell verplappert hätte, sich dann aber wieder auf die indoktrinierten Texte einstellt:



Bei der Erläuterung der Tiananmen-Unruhen sind vor allem die zusätzlichen Hinweise spannend.

Das Modell arbeitet äußerst schnell. Mit dem (wenig effizienten) AWQ kann man auf einer RTX 6000 Pro etwa 20 Token pro Sekunde erreichen, das 4-Bit-quantisierte Modell schafft auf einem M2 Ultra fast 50 Token pro Sekunde, bei OpenRouter ist es mit knapp 150 Token pro Sekunde gelistet. Das ist für ein solches Modell beachtlich.



Source link

Beliebt

Die mobile Version verlassen