Künstliche Intelligenz

KI als Katalysator für Softwarearchitektur: Praxisbeispiel aus dem ÖPNV


close notice

This article is also available in
English.

It was translated with technical assistance and editorially reviewed before publication.

Künstliche Intelligenz (KI) bringt neue Anforderungen, Paradigmen und Wechselwirkungen mit sich, die klassische Ansätze der Softwarearchitektur an vielen Stellen erweitern oder herausfordern. Für Softwarearchitektinnen und -architekten bedeutet das: Sie müssen ihre Rolle, ihre Methoden und ihre Denkweisen weiterentwickeln, um den komplexen Rahmenbedingungen datengetriebener Systeme gerecht zu werden.




(Bild: 

Mahbouba Gharbi

)

Mahbouba ist Geschäftsführerin, Softwarearchitektin und Trainerin bei der ITech Progress GmbH, einem Beratungsunternehmen und akkreditierten Schulungsanbieter des iSAQB mit über zwanzig Jahren Erfahrung. Als Kuratorin des iSAQB-Advanced-Level-Moduls SWARC4AI vermittelt sie methodische und technische Konzepte für den Entwurf und die Entwicklung skalierbarer KI-Systeme. Dabei legt sie besonderen Wert auf praxisnahe, nachhaltige und anwendungsorientierte Lösungen.




(Bild: 

Dimitri Blatner

)

Dimitri ist Softwarearchitekt und Trainer bei der ITech Progress GmbH. Als zertifizierter Trainer für das iSAQB-Advanced-Level-Modul SWARC4AI vermittelt er praxisnahes Wissen zum Entwurf und zur Entwicklung skalierbarer KI-Systeme. Seine Schwerpunkte liegen in den Bereichen Cloud-Technologien, DevSecOps, hybride Architekturen und KI-basierte Lösungen. Dimitri unterstützt Unternehmen dabei, innovative und zugleich sichere Systeme erfolgreich zu realisieren.

Dieser Artikel beleuchtet, wie sich der Architektur-Entstehungsprozess durch den Einsatz von KI verändert – und was dies konkret für die Praxis der Softwarearchitektur bedeutet. Zum Veranschaulichen zeigen wir Beispiele eines Projekts aus dem öffentlichen Personennahverkehr (ÖPNV), an dem wir als Softwarearchitekten beteiligt waren.

Im Architekturkontext tritt künstliche Intelligenz in zwei unterschiedlichen Rollen auf – als Unterstützung im Entstehungsprozess und als aktive Systemkomponente. Diese Unterscheidung ist essenziell für die Einordnung technischer, methodischer und organisatorischer Anforderungen. In ihrer Rolle als Werkzeug unterstützt KI die Architekten entlang verschiedener Prozessphasen. In frühen Phasen können KI-Tools bei der Konsolidierung und Analyse von Anforderungen helfen. Natural Language Processing (NLP) ermöglicht zum Beispiel das Extrahieren funktionaler und nichtfunktionaler Anforderungen aus Textquellen oder Gesprächsprotokollen.

Später im Prozess lassen sich mithilfe graphbasierter Modelle Architekturvarianten generieren, die die KI hinsichtlich vordefinierter Qualitätsmerkmale bewertet. In Review-Phasen unterstützt die KI bei der Analyse bestehender Systeme, etwa durch das Erkennen von Architekturerosion oder von zyklischen Abhängigkeiten.

Diese Unterscheidung zwischen den beiden Rollen von KI gilt auch im ÖPNV und sie bringt jeweils andere Qualitätsanforderungen, Betriebsrisiken und Verantwortlichkeiten mit sich. Während KI als Analyse-Tool im Hintergrund arbeitet und prozessorientierte Verbesserungen unterstützt, beeinflusst sie als Bestandteil produktiver Systeme unmittelbar das Verhalten, die Resilienz und Weiterentwicklung des digitalen Fahrgastangebots und des Betriebsmanagements.

Das Verkehrsunternehmen mit über 10 Millionen Fahrgästen pro Monat hat künstliche Intelligenz systematisch in seine Softwarearchitektur integriert, mit dem Ziel, die Qualität, Wartbarkeit und Serviceorientierung zu verbessern – sowohl in der betrieblichen IT als auch in den digitalen Produkten für die Fahrgäste. Bereits im Architekturprozess kommt ein generatives KI-Analysemodul auf Basis eines großen Sprachmodells (LLM) zum Einsatz: Es wertet Architekturdokumentationen automatisiert aus, extrahiert zentrale Designentscheidungen, etwa zur Anbindung von Fahrgastinformationssystemen oder zur Datenhaltung von Echtzeitfahrplänen – und gleicht diese mit den implementierten Services und Schnittstellen ab. So können die Architekten Inkonsistenzen und technische Schulden frühzeitig erkennen und dokumentieren.

Ein weiteres datengetriebenes Assistenzsystem identifiziert mithilfe von Unsupervised Learning Ausfallmuster in historischen Fahrzeugdaten. Diese Erkenntnisse fließen direkt in Anforderungen an Sensorik und Datenlatenz ein – und stärken somit Architekturentscheidungen.

Im Betrieb analysiert ein prädiktives Machine-Learning-Modell (ML-Modell) kontinuierlich Diagnosedaten der Busflotte. Es erkennt frühzeitig Anzeichen technischer Defekte (Predictive Maintenance) und ermöglicht gezielte Wartungsmaßnahmen. Zugleich generiert es automatisch passende Fahrgastinformationen, sobald Abweichungen vom Fahrplan auftreten – abgestimmt auf die Prognosegüte. Die Systemarchitektur bildet hierfür nicht nur das ML-Modell selbst ab, sondern auch die erforderlichen Datenpipelines, MLOps-Infrastruktur sowie Prozesse für Validierung, Monitoring und kontinuierliches Training. Die Modellpipeline wird so zu einem kritischen, wartbaren und transparenten Bestandteil der Gesamtarchitektur.

Traditionelle Softwarearchitektur ist in erster Linie funktionsorientiert: Sie konzentriert sich auf technische Komponenten, klare Schnittstellen und wohldefinierte Abläufe. In KI-basierten Systemen verschiebt sich der Fokus erheblich. Hier prägen Datenflüsse, Machine-Learning-Modelle und Trainingsprozesse den Aufbau des Systems. Dadurch gewinnen Datenquellen, deren Qualität und deren Verfügbarkeit eine entscheidende Bedeutung. Die Auswahl und Vorbereitung der Daten haben unmittelbaren Einfluss auf die Leistungsfähigkeit und Korrektheit der später eingesetzten Modelle.

Darüber hinaus müssen Architekten sich mit Konzepten wie Modellversionierung, kontinuierlicher Modellverbesserung (Continuous Learning) und passenden Monitoring-Mechanismen beschäftigen. Klassische Erwartungen an Systemstabilität weichen neuen Anforderungen an Flexibilität und Anpassungsfähigkeit, da sich Modelle durch Nachtrainieren oder den Austausch gegen verbesserte Varianten verändern. Die Architekturarbeit wird dadurch dynamischer und datengetriebener.

Die Qualitätskriterien für Softwaresysteme erweitern sich durch KI um neue Dimensionen. Neben etablierten Anforderungen wie Performance, Wartbarkeit oder Sicherheit treten Aspekte wie Erklärbarkeit, Fairness und Vertrauenswürdigkeit auf. Entscheidungen, die durch ML-Modelle getroffen werden, müssen für technische und nicht-technische Stakeholder nachvollziehbar sein – insbesondere dann, wenn sie Auswirkungen auf Menschen oder gesellschaftliche Prozesse haben.

Zusätzlich steigt die Bedeutung von Robustheit gegenüber veränderten Datenlagen und von Mechanismen zur Absicherung gegen fehlerhafte Modellvorhersagen. Architekten sind gefordert, Unsicherheiten explizit zu behandeln: durch Confidence Scores, Abstufungen in der Entscheidungssicherheit oder Fallback-basierte Systempfade. Damit wird deutlich: Architektur im KI-Zeitalter muss über rein technische Kriterien hinausgehen und systemische Resilienz und ethische Verantwortung mitdenken.

Im Unterschied zu klassischen Projekten, bei denen die Architektur zu Beginn weitgehend festgelegt wird, besteht der Architekturprozess in KI-Projekten von Anfang an aus einem iterativen Vorgehen (Abbildung 1). Wesentliche Erkenntnisse über Datenverteilung, Modellverhalten oder Anwendungsfälle ergeben sich oft erst während explorativer Experimente. Entsprechend muss die Architektur flexibel genug sein, um nachträglich anpassbar oder sogar grundlegend überholbar zu sein und einen hohen Grad an Automatisierung zu ermöglichen.



Die Architekturentwicklung erfolgt iterativ (Abb. 1).

(Bild: Gharbi/Blatner)

Dies erfordert nicht nur technische Modularität, sondern auch eine veränderte Herangehensweise: Architekturarbeit wird zu einem kontinuierlichen Lernprozess. Entscheidungen unter Unsicherheit, das Einführen temporärer Lösungen (Safeguards) und die Bereitschaft, bestehende Ideen bei neuen Erkenntnissen zu verwerfen, gehören zum Alltag. Der Architekturprozess entwickelt sich so zu einem evolutionären Dialog mit der Realität der Daten und des Anwendungsbereichs.

Mit der Einführung von KI-Technologien verändert sich auch die Zusammensetzung der Teams. Rollen wie Data Scientist, ML Engineer oder MLOps-Spezialist bringen neue Perspektiven und Arbeitsweisen ein, die sich grundlegend von traditionellen Entwickler- oder Quality-Assurance-Profilen unterscheiden (Abbildung 2). Für Architekten bedeutet das, sich nicht nur technisch, sondern auch kommunikativ und methodisch anzupassen. Sie müssen die Konzepte, Arbeitsweisen und Erwartungen dieser neuen Rollen verstehen und als Brückenbauer agieren: zwischen Fachbereichen, Datenverantwortlichen und technischen Implementierungsteams. Architekturentscheidungen betreffen zunehmend nicht nur Code und Komponenten, sondern auch Datenstrukturen, Modelle, Trainingseinheiten und Betriebsprozesse. Das führt zu komplexeren Verantwortungsschnittstellen, die klare Absprachen und transparente Prozesse erfordern.



Neue Rollen und Verantwortungsschnittstellen (Abb. 2)

(Bild: Gharbi/Blatner)

Erfolgreiche Architektur im KI-Umfeld setzt ein tiefes Verständnis für die jeweilige Anwendungsdomäne voraus. Ob im Gesundheitswesen, im öffentlichen Verkehr oder in der Finanzbranche – Daten und Modelle müssen mit fachlichem Kontext angereichert und an die Bedürfnisse der Stakeholder angepasst werden. Architekten suchen daher aktiv den Austausch mit Experten aus der Domäne, verstehen deren Sprache und integrieren deren Sichtweisen in architektonische Überlegungen.

Methodisch helfen dabei Verfahren wie Domain Storytelling, Event Storming oder Design Thinking. Diese Ansätze ermöglichen es, komplexe Anforderungen frühzeitig zu erkennen, blinde Flecken in der Modellierung zu vermeiden und die Akzeptanz für KI-basierte Systeme zu erhöhen. Besonders wichtig ist es, nicht nur Entscheidungsträger, sondern auch spätere Nutzerinnen und Nutzer in die Architekturarbeit einzubinden, beispielsweise durch Co-Creation-Workshops oder Szenarienentwicklung.



Source link

Beliebt

Die mobile Version verlassen