Apps & Mobile Entwicklung

G9 QLC: Micron beschleunigt den lahmen Speicher gleich doppelt


Nach Kioxia und SanDisk mit ihrem BiCS8 QLC bietet auch Micron mit seinem G9 QLC die branchenweit höchste Speicherkapazität für NAND-Flash von 2 Tbit pro Die. Per Adaptive Write Technology (AWT) wird zusätzlich zum „SLC-Cache“ noch ein „TLC-Cache“ eingeführt. Die erste SSD-Serie mit dieser Technik heißt Micron 2600.

Nach Kioxia auch Micron mit 2-Tbit-Chips

Als erster NAND-Hersteller hatte Kioxia gemeinsam mit Partner SanDisk Speicherchips mit einer Speicherkapazität von 2 Tbit (256 GByte) eingeführt, die bis heute das Maximum darstellen. Jetzt folgt Micron mit seinem QLC-NAND der G9-Generation, der in diesem Punkt zum BiCS8 QLC von Kioxia und SanDisk aufschließt.

Die 6-Plane-Architektur sorgt für höhere Parallelität beim Speicherzugriff und somit mehr Leistung. Wie gewohnt macht Micron keine Angaben zu Latenz und Durchsatz auf Chipebene, nennt aber ein I/O-Interface mit 3.600 MT/s, was dem Niveau des BiCS8 QLC entspricht.

Mit den 2-Tbit-Chips lässt sich gegenüber den gängigeren 1-Tbit-Chips eine SSD mit demselben Speichervolumen bei nur der Hälfte an Chips realisieren. Andersherum wird bei gleicher Anzahl Speicherchips die Kapazität verdoppelt. Damit wird es leichter besonders „große“ SSDs umzusetzen, die etwa jenseits von 100 TB liegen. Doch was Micron heute vorstellt, ist nur eine Client-SSD mit maximal 2 TB Speicherplatz, die am Ende der Meldung beschrieben wird.

Microns AWT mit doppeltem Schreibpuffer

Eine Schwäche von QLC-NAND ist die niedrigere Schreibgeschwindigkeit, auch wenn sich das mit den jüngsten Generationen etwas gebessert hat. Micron setzt bei seinem QLC-NAND nun auf die sogenannte Adaptive Write Technology (AWT) hinter der sich schlicht ein zweistufiges Cache-System verbirgt.

1. Wie gehabt ein „SLC-Cache“

Bei nahezu allen modernen SSDs greift der SLC-Cache (besser SLC-Modus) beim Schreiben unter die Arme. Dabei werden Daten temporär mit 1 Bit pro Zelle im SLC-Modus geschrieben, was viel schneller geschieht als mit 3 Bit (TLC) oder 4 Bit (QLC).

Microns Adaptive Write Technology (AWT) erklärt (Bild: Micron)

2. Zusätzlich ein „TLC-Cache“

Bei Microns AWT kommt noch eine zweite Cache-Stufe hinzu: Ist der SLC-Cache nahezu erschöpft, springt der TLC-Cache (TLC-Modus) ein. Daten werden dann also auch noch im TLC-Modus mit 3 Bit pro Zelle gesichert. Erst wenn diese Zwischenspeicher erschöpft sind (ultimativ, weil alle Zellen mit 3 Bit beschrieben sind), erfolgt die Migration der Daten in den QLC-Modus mit 4 Bit. Das gleiche geschieht auch in Leerlaufphasen im Hintergrund.

Damit stehen für spätere Transfers wieder SLC- und TLC-Cache-Kapazitäten zur Verfügung, sofern insgesamt noch freier Speicherplatz vorhanden ist.

Ein Video des Herstellers veranschaulicht das Prinzip, das noch ausführlicher im Tech Brief (PDF) beschrieben wird.

In dem Dokument wird erklärt, dass sich die Größe des SLC- und des TLC-Cache jeweils nach dem verfügbaren Speicherplatz richtet, sich also dynamisch verändert, um stets die für die SSD angegebene Nutzkapazität bieten zu können. Die maximale Größe des SLC/TLC-Cache beträgt laut Micron 40 Prozent der SSD-Speicherkapazität. Im Falle einer 2-TB-SSD können also bis zu 800 GB mit hoher Geschwindigkeit geschrieben werden, aber eben nur dann, wenn die SSD komplett leer ist. Mit zunehmendem Füllstand wird der Zwischenspeicher immer kleiner.

Die Micron 2600 SSD mit G9 QLC im Detail

Besonders hohe Speicherkapazitäten sind bei der ersten SSD-Serie mit Microns G9-QLC und AWT aber Fehlanzeige.

Leistung laut Datenblatt

Die Serie Micron 2600 bietet nämlich lediglich 512 GB, 1 TB oder 2 TB Speichervolumen im üblichen M.2-2280-Format. Kombiniert mit dem DRAM-losen Phison E29T soll es die SSD in der Spitze auf 7.200 MB/s beim sequenziellen Lesen und 6.500 MB/s beim sequenziellen Schreiben über PCIe 4.0 bringen. Die IOPS werden auf bis zu 1,0 Millionen lesend und 1,1 Millionen schreibend beziffert. Diese Werte gelten aber nur für das 2-TB-Modell. Die Version mit 512 GB ist erheblich langsamer: Sequenziell werden nur noch 5.000/3.000 MB/s erreicht und die IOPS liegen nur noch bei 370.000/690.000 – weniger Speicherchips bedeuten hier einen Nachteil.

Micron 2600 SSD mit G9 QLC und AWT (Bild: Micron)

Weder bei der Leistung noch bei der Speicherkapazität kann die Micron-2600-Serie also für Aufmerksamkeit sorgen. Die Total Bytes Written (TBW) fallen mit 200 TB, 400 TB und 700 TB QLC-typisch niedrig aus. Die Serie werde ab heute weltweit an OEMs ausgeliefert, wird also künftig in Notebooks oder Komplett-PCs zu finden sein. Micron bietet die Serie aber auch in den kompakten Formaten M.2 2242 und M.2 2230 an, sodass auch Gaming-Handhelds in Frage kommen.

Die QLC-Schreibschwäche bleibt?

In einem ersten Test erweist sich die Micron 2600 in vielen Disziplinen als ebenbürtig mit manchem TLC-Modell der PCIe-4.0-Fraktion. Doch wenn es um große Schreibtransfers in der Praxis geht, dann ist sie sogar langsamer als manches QLC-Pendant. Auch hier bedeuten weniger Speicherchips einen Nachteil, den die oben beschriebene AWT-Technik nicht immer kompensieren kann.

Micron 2600 mit solider Gaming-Leistung (Bild: Tweak Town)
Office-Benchmarks sind ebenfalls kein Problem (Bild: Tweak Town)
Große Schreibtransfers bleiben die Schwäche von QLC-SSDs (Bild: Tweak Town)



Source link

Leave a Reply

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Beliebt

Die mobile Version verlassen